Serine proteinase requirement for the extra-cellular metabolism of pulmonary surfactant. 1990

N J Gross, and R M Schultz
Department of Medicine, Stritch School of Medicine, Loyola University, Chicago, IL.

Pulmonary surfactant as lavaged from the alveoli exists in at least three structural subtypes, lamellar body-like, tubular myelin and vesicular forms that can be separated on the basis of their buoyant densities. Previous studies have suggested that surfactant is secreted in the lamellar body form and metabolized through the other subtypes in sequence. This metabolic sequence can be reproduced in vitro by cyclic expansion and contraction ('cycling') of the surface area of nascent surfactant at 38 degrees C. Cycling of nascent secretion, which is predominantly of lamellar body-like buoyant density, rapidly converted it to the buoyant density of tubular myelin and then to that of the vesicular subtype. We examined the role of proteinases in the conversion of nascent surfactant subtypes in vitro. Addition of metallo-, cysteine- and acid-proteinase inhibitors to the cycling mix did not inhibit the conversion of tubular myelin to vesicular subtype. However, a variety of serine proteinase inhibitors inhibited the formation of vesicular subtype. Their inhibitory effect was dose-related and most marked for alpha 1-antitrypsin where a concentration equal to that found in the alveolar fluid lining layer resulted in 50% inhibition of the generation of light subtype, suggesting physiological relevance. The enzyme(s) responsible for promoting the generation of light subtype was sedimentable and therefore presumably in particulate form. By differential centrifugation of lung secretions it was separable from alveolar macrophages and partially separable from surfactant itself. It has not been identified, nor has its substrate. We conclude that in vitro cycling provides a model for the study of alveolar surfactant metabolism and that the conversion of tubular myelin to vesicular forms of surfactant requires serine proteinase activity.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D011650 Pulmonary Alveoli Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place. Alveoli, Pulmonary,Alveolus, Pulmonary,Pulmonary Alveolus
D011663 Pulmonary Surfactants Substances and drugs that lower the SURFACE TENSION of the mucoid layer lining the PULMONARY ALVEOLI. Surfactants, Pulmonary,Pulmonary Surfactant,Surfactant, Pulmonary
D001992 Bronchoalveolar Lavage Fluid Washing liquid obtained from irrigation of the lung, including the BRONCHI and the PULMONARY ALVEOLI. It is generally used to assess biochemical, inflammatory, or infection status of the lung. Alveolar Lavage Fluid,Bronchial Lavage Fluid,Lung Lavage Fluid,Bronchial Alveolar Lavage Fluid,Lavage Fluid, Bronchial,Lavage Fluid, Lung,Pulmonary Lavage Fluid,Alveolar Lavage Fluids,Bronchial Lavage Fluids,Bronchoalveolar Lavage Fluids,Lavage Fluid, Alveolar,Lavage Fluid, Bronchoalveolar,Lavage Fluid, Pulmonary,Lavage Fluids, Alveolar,Lavage Fluids, Bronchial,Lavage Fluids, Bronchoalveolar,Lavage Fluids, Lung,Lavage Fluids, Pulmonary,Lung Lavage Fluids,Pulmonary Lavage Fluids
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D005260 Female Females
D000515 alpha 1-Antitrypsin Plasma glycoprotein member of the serpin superfamily which inhibits TRYPSIN; NEUTROPHIL ELASTASE; and other PROTEOLYTIC ENZYMES. Trypsin Inhibitor, alpha 1-Antitrypsin,alpha 1-Protease Inhibitor,alpha 1-Proteinase Inhibitor,A1PI,Prolastin,Serpin A1,Zemaira,alpha 1 Antiprotease,alpha 1-Antiproteinase,1-Antiproteinase, alpha,Antiprotease, alpha 1,Inhibitor, alpha 1-Protease,Inhibitor, alpha 1-Proteinase,Trypsin Inhibitor, alpha 1 Antitrypsin,alpha 1 Antiproteinase,alpha 1 Antitrypsin,alpha 1 Protease Inhibitor,alpha 1 Proteinase Inhibitor
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

N J Gross, and R M Schultz
January 1987, Mead Johnson Symposium on Perinatal and Developmental Medicine,
N J Gross, and R M Schultz
January 1995, Annual review of physiology,
N J Gross, and R M Schultz
October 1977, Nature,
N J Gross, and R M Schultz
March 1989, Clinics in chest medicine,
N J Gross, and R M Schultz
September 1971, Laboratory investigation; a journal of technical methods and pathology,
N J Gross, and R M Schultz
July 1971, Nihon Ishikai zasshi. Journal of the Japan Medical Association,
N J Gross, and R M Schultz
January 2001, Annual review of physiology,
N J Gross, and R M Schultz
April 1977, Journal of applied physiology: respiratory, environmental and exercise physiology,
Copied contents to your clipboard!