Solubilization and partial characterization of rat liver squalene epoxidase. 1975

T Ono, and K Bloch

The microsomal enzyme system from rat liver which catalyzes squalene epoxidation requires a supernatant protein and phospholipids (Tai, H., and Bloch, K. (1972) J. Biol. Chem. 247, 3767). It has now been found that these two cytoplasmic components can be replaced by Triton X-100. The same detergent solubilizes the microsomal squalene epoxidase and the resulting supernatant can be separated into two components, A and B, by DEAE-cellulose chromatography. Neither Fraction A nor B alone has significant squalene epoxidase activity but combining the two affords a reconstituted system 5-fold higher in specific epoxidase activity than that of the original microsomes. FAD and Triton X-100 in addition to molecular oxygen and NADPH are required in the reconstituted system. Subjecting Fraction A to a second DEAE-cellulose chromatography does not change its specific activity but lowers NADH-ferricyanide reductase activity and the protoheme content to 1/25 and 1/4, respectively. When Fraction B was chromatographed on Sephadex G-200, the specific epoxidase activity tested in the presence of Fraction A was increased 3-fold. This procedure also raised the specific activity of NADPH-cytochrome c reductase activity in Fraction B 3-fold. The reconstituted epoxidase system is not inhibited by either carbon monoxide, potassium cyanide, or o-phenanthrolien but Tiron at 1 mM was inhibitory (50%). Erythrocuprein has no effect on epoxidation. No evidence has been found for the participation of hemoproteins (P450 or cytochrome b5) in squalene epoxidation. Component B appears to be identical with the flavoprotein NADPH-cytochrome c reductase. Component A may be a flavoprotein with an easily dissociable prosthetic group.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010105 Oxygenases Oxidases that specifically introduce DIOXYGEN-derived oxygen atoms into a variety of organic molecules. Oxygenase
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D002848 Chromatography, DEAE-Cellulose A type of ion exchange chromatography using diethylaminoethyl cellulose (DEAE-CELLULOSE) as a positively charged resin. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) DEAE-Cellulose Chromatography,Chromatography, DEAE Cellulose,DEAE Cellulose Chromatography
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D003579 Cytochrome Reductases Reductases, Cytochrome
D003840 Deoxycholic Acid A bile acid formed by bacterial action from cholate. It is usually conjugated with glycine or taurine. Deoxycholic acid acts as a detergent to solubilize fats for intestinal absorption, is reabsorbed itself, and is used as a choleretic and detergent. Deoxycholate,Desoxycholic Acid,Kybella,Choleic Acid,Deoxycholic Acid, 12beta-Isomer,Deoxycholic Acid, 3beta-Isomer,Deoxycholic Acid, 5alpha-Isomer,Deoxycholic Acid, Disodium Salt,Deoxycholic Acid, Magnesium (2:1) Salt,Deoxycholic Acid, Monoammonium Salt,Deoxycholic Acid, Monopotassium Salt,Deoxycholic Acid, Monosodium Salt,Deoxycholic Acid, Sodium Salt, 12beta-Isomer,Dihydroxycholanoic Acid,Lagodeoxycholic Acid,Sodium Deoxycholate,12beta-Isomer Deoxycholic Acid,3beta-Isomer Deoxycholic Acid,5alpha-Isomer Deoxycholic Acid,Deoxycholate, Sodium,Deoxycholic Acid, 12beta Isomer,Deoxycholic Acid, 3beta Isomer,Deoxycholic Acid, 5alpha Isomer
D004355 Drug Stability The chemical and physical integrity of a pharmaceutical product. Drug Shelf Life,Drugs Shelf Lives,Shelf Life, Drugs,Drug Stabilities,Drugs Shelf Life,Drugs Shelf Live,Life, Drugs Shelf,Shelf Life, Drug,Shelf Live, Drugs,Shelf Lives, Drugs
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs

Related Publications

T Ono, and K Bloch
December 1982, Biochimica et biophysica acta,
T Ono, and K Bloch
June 1972, The Journal of biological chemistry,
T Ono, and K Bloch
January 1985, Methods in enzymology,
T Ono, and K Bloch
April 1970, The Journal of biological chemistry,
T Ono, and K Bloch
November 1990, Journal of lipid research,
T Ono, and K Bloch
September 1980, Biochemical and biophysical research communications,
T Ono, and K Bloch
January 1980, Biochimica et biophysica acta,
T Ono, and K Bloch
July 1995, Journal of lipid research,
T Ono, and K Bloch
January 1995, The Journal of biological chemistry,
Copied contents to your clipboard!