Gas transport and blood acid-base balance in diving sea snakes. 1975

R S Seymour, and M E Webster

The values of hemoglobin concentration, Hb-O2 affinity and buffering capacity of the blood of six sea snake species considerably overlap values from terrestrial squamates. Decreased blood pH had little effect on the P50 but increased the n-value of Hb-O2 equilibrium curves. The O2 saturation of blood in the dorsal aorta varied between about 30 and 70% during voluntary diving in Acalyptophis peronii and Lapemis hardwickii. Voluntary dives ended when the lung PP02 was about 50 mm Hg and the arterial PO2 about 30 mm Hg indicating that roughly half of the O2 reserves had been used. In conjunction with relatively stable blood lactate concentration and pH, this indicates that voluntary dives occurred largely aerobically. In contrast, forced dives resulted in depletion of O2 reserves and large changes in blood acid-base balance. Long recovery periods following forced dives are inconsistent with field observations and thus suggest that extensive anaerobic metabolism does not normally occur in sea snakes. Bradycardia was not evident during forced dives. Large differences in PO2 between the lung and dorsal aorta indicated considerable right to left shunting either in the heart or in the lung. Venous blood represented over 50% of the systemic flow when there was considerable O2 in the lung. Therefore blood PO2 may remain relatively low despite elevated lung PO2 resulting from diving. In view of substantial capability for extra-pulmonary gas exchange, high shunting reduces the possibility of losing O2 through the skin and also may help prevent decompression sickness following deep dives.

UI MeSH Term Description Entries
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002404 Catheterization Use or insertion of a tubular device into a duct, blood vessel, hollow organ, or body cavity for injecting or withdrawing fluids for diagnostic or therapeutic purposes. It differs from INTUBATION in that the tube here is used to restore or maintain patency in obstructions. Cannulation,Cannulations,Catheterizations
D004242 Diving An activity in which the organism plunges into water. It includes scuba and bell diving. Diving as natural behavior of animals goes here, as well as diving in decompression experiments with humans or animals. Divings
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000136 Acid-Base Equilibrium The balance between acids and bases in the BODY FLUIDS. The pH (HYDROGEN-ION CONCENTRATION) of the arterial BLOOD provides an index for the total body acid-base balance. Anion Gap,Acid-Base Balance,Acid Base Balance,Acid Base Equilibrium,Anion Gaps,Balance, Acid-Base,Equilibrium, Acid-Base,Gap, Anion,Gaps, Anion

Related Publications

R S Seymour, and M E Webster
March 1971, Journal of applied physiology,
R S Seymour, and M E Webster
March 1994, The Journal of experimental biology,
R S Seymour, and M E Webster
December 1968, Munchener medizinische Wochenschrift (1950),
R S Seymour, and M E Webster
January 2009, Neonatal network : NN,
R S Seymour, and M E Webster
October 1973, The American journal of physiology,
R S Seymour, and M E Webster
August 2008, Annals of the New York Academy of Sciences,
R S Seymour, and M E Webster
January 1977, Medicina,
R S Seymour, and M E Webster
March 1968, Aerospace medicine,
R S Seymour, and M E Webster
June 1970, Voprosy okhrany materinstva i detstva,
R S Seymour, and M E Webster
January 1973, Physiologia Bohemoslovaca,
Copied contents to your clipboard!