Hematopoietic stem cells are pluripotent and not just "hematopoietic". 2013

Makio Ogawa, and Amanda C LaRue, and Meenal Mehrotra
Department of Pathology and Laboratory Medicine, Ralph H. Johnson VAMC, USA. ogawam@musc.edu

Over a decade ago, several preclinical transplantation studies suggested the striking concept of the tissue-reconstituting ability (often referred to as HSC plasticity) of hematopoietic stem cells (HSCs). While this heralded an exciting time of radically new therapies for disorders of many organs and tissues, the concept was soon mired in controversy and remained dormant for almost a decade. This commentary provides a concise review of evidence for HSC plasticity, including more recent findings based on single HSC transplantation in mouse and clinical transplantation studies. There is strong evidence for the concept that HSCs are pluripotent and are the source for the majority, if not all, of the cell types in our body. Also discussed are some biological and experimental issues that need to be considered in the future investigation of HSC plasticity.

UI MeSH Term Description Entries
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D018380 Hematopoietic Stem Cell Transplantation Transfer of HEMATOPOIETIC STEM CELLS from BONE MARROW or BLOOD between individuals within the same species (TRANSPLANTATION, HOMOLOGOUS) or transfer within the same individual (TRANSPLANTATION, AUTOLOGOUS). Hematopoietic stem cell transplantation has been used as an alternative to BONE MARROW TRANSPLANTATION in the treatment of a variety of neoplasms. Stem Cell Transplantation, Hematopoietic,Transplantation, Hematopoietic Stem Cell
D019070 Cell Lineage The developmental history of specific differentiated cell types as traced back to the original STEM CELLS in the embryo. Cell Lineages,Lineage, Cell,Lineages, Cell
D030342 Genetic Diseases, Inborn Diseases that are caused by genetic mutations present during embryo or fetal development, although they may be observed later in life. The mutations may be inherited from a parent's genome or they may be acquired in utero. Hereditary Diseases,Genetic Diseases,Genetic Disorders,Hereditary Disease,Inborn Genetic Diseases,Single-Gene Defects,Defect, Single-Gene,Defects, Single-Gene,Disease, Genetic,Disease, Hereditary,Disease, Inborn Genetic,Diseases, Genetic,Diseases, Hereditary,Diseases, Inborn Genetic,Disorder, Genetic,Disorders, Genetic,Genetic Disease,Genetic Disease, Inborn,Genetic Disorder,Inborn Genetic Disease,Single Gene Defects,Single-Gene Defect
D039904 Pluripotent Stem Cells Cells that can give rise to cells of the three different GERM LAYERS. Stem Cells, Pluripotent,Pluripotent Stem Cell,Stem Cell, Pluripotent

Related Publications

Makio Ogawa, and Amanda C LaRue, and Meenal Mehrotra
October 2006, The Journal of clinical investigation,
Makio Ogawa, and Amanda C LaRue, and Meenal Mehrotra
September 2016, Haematologica,
Makio Ogawa, and Amanda C LaRue, and Meenal Mehrotra
December 2011, Nihon rinsho. Japanese journal of clinical medicine,
Makio Ogawa, and Amanda C LaRue, and Meenal Mehrotra
February 1996, Experimental hematology,
Makio Ogawa, and Amanda C LaRue, and Meenal Mehrotra
November 2000, Nature medicine,
Makio Ogawa, and Amanda C LaRue, and Meenal Mehrotra
January 2015, Journal of biomedical research,
Makio Ogawa, and Amanda C LaRue, and Meenal Mehrotra
July 2015, Current opinion in hematology,
Makio Ogawa, and Amanda C LaRue, and Meenal Mehrotra
January 2019, Methods in molecular biology (Clifton, N.J.),
Makio Ogawa, and Amanda C LaRue, and Meenal Mehrotra
January 2019, Methods in molecular biology (Clifton, N.J.),
Makio Ogawa, and Amanda C LaRue, and Meenal Mehrotra
July 2015, Journal of cellular biochemistry,
Copied contents to your clipboard!