[Effect of SUV39H1 siRNA silence on apoptosis and proliferation of acute myelogenous leukemia KG-1 cell line]. 2013

Xu-Dong Ma, and Ting Zhao, and Yi-Qun Huang
Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian Province, China. xudongma05@yahoo.com

This study was aimed to investigate the effects of SUV39H1 siRNA on proliferation and apoptosis of acute myelogenous leukemia KG-1 cell line. The small interfering RNA (siRNA) targeting SUV39H1 gene was designed and transfected into KG-1 cells by Lipofectamine(TM) 2000. Cell growth affected by SUV39H1 siRNA was determined by MTS method. Cell apoptosis was measured by flow cytometry. The expressions of P15 and anti-apoptosis protein such as BCL-2, procaspase-9, procaspase-3 and C-MYC were detected by Western blot. The results indicated that siRNA targeting SUV39H1 inhibited proliferation of KG-1 cells. Proliferated rates were (76.43 ± 1.98)%, (51.31 ± 1.84)%, (37.31 ± 1.61)%, (18.94 ± 3.22)% respectively after transfection with SUV39H1 siRNA at 30, 60, 120, 240 nmol/L for 48 h, while P15 expression was upregulated. Apoptotic cells significantly increased, apoptotic rates were (40.2 ± 5.1)%, (56.8 ± 4.8)%, (71.6 ± 5.6)% respectively after transfection with siRNA targeting SUV39H1 at 30, 60, 120 nmol/L (P < 0.05). The protein expression of BCL-2, procaspase-9, procaspase-3, C-MYC was downregulated after transfection. It is concluded that the siRNA targeting SUV39H1 inhibits cell growth and induces cell apoptosis of KG-1 cell line, which may be a new therapeutic target in human leukemia.

UI MeSH Term Description Entries
D008780 Methyltransferases A subclass of enzymes of the transferase class that catalyze the transfer of a methyl group from one compound to another. (Dorland, 28th ed) EC 2.1.1. Methyltransferase
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D016271 Proto-Oncogene Proteins c-myc Basic helix-loop-helix transcription factors encoded by the c-myc genes. They are normally involved in nucleic acid metabolism and in mediating the cellular response to growth factors. Elevated and deregulated (constitutive) expression of c-myc proteins can cause tumorigenesis. L-myc Proteins,N-myc Proteins,c-myc Proteins,myc Proto-Oncogene Proteins,p62(c-myc),Proto-Oncogene Products c-myc,Proto-Oncogene Proteins myc,myc Proto-Oncogene Product p62,p62 c-myc,L myc Proteins,N myc Proteins,Proteins myc, Proto-Oncogene,Proto Oncogene Products c myc,Proto Oncogene Proteins c myc,Proto Oncogene Proteins myc,Proto-Oncogene Proteins, myc,c myc Proteins,myc Proto Oncogene Product p62,myc Proto Oncogene Proteins,myc, Proto-Oncogene Proteins,p62 c myc
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D053148 Caspase 3 A short pro-domain caspase that plays an effector role in APOPTOSIS. It is activated by INITIATOR CASPASES such as CASPASE 9. Isoforms of this protein exist due to multiple alternative splicing of its MESSENGER RNA. CASP3,Apopain,Caspase-3,Pro-Caspase-3,Procaspase-3,Pro Caspase 3,Procaspase 3
D053453 Caspase 9 A long pro-domain caspase that contains a CASPASE RECRUITMENT DOMAIN in its pro-domain region. Caspase 9 is activated during cell stress by mitochondria-derived proapoptotic factors and by CARD SIGNALING ADAPTOR PROTEINS such as APOPTOTIC PROTEASE-ACTIVATING FACTOR 1. It activates APOPTOSIS by cleaving and activating EFFECTOR CASPASES. Apoptotic Protease Activating Factor 3,Caspase-9,ICE-LAP6 Protein,ICE-Like Apoptotic Protease 6,Pro-Caspase-9,Procaspase-9,ICE LAP6 Protein,ICE Like Apoptotic Protease 6,Pro Caspase 9,Procaspase 9
D019253 Proto-Oncogene Proteins c-bcl-2 Membrane proteins encoded by the BCL-2 GENES and serving as potent inhibitors of cell death by APOPTOSIS. The proteins are found on mitochondrial, microsomal, and NUCLEAR MEMBRANE sites within many cell types. Overexpression of bcl-2 proteins, due to a translocation of the gene, is associated with follicular lymphoma. bcl-2 Proto-Oncogene Proteins,c-bcl-2 Proteins,B-Cell Leukemia 2 Family Proteins,BCL2 Family Proteins,BCL2 Proteins,B Cell Leukemia 2 Family Proteins,Family Proteins, BCL2,Proteins, BCL2,Proteins, BCL2 Family,Proto Oncogene Proteins c bcl 2,Proto-Oncogene Proteins, bcl-2,bcl 2 Proto Oncogene Proteins,c bcl 2 Proteins,c-bcl-2, Proto-Oncogene Proteins

Related Publications

Xu-Dong Ma, and Ting Zhao, and Yi-Qun Huang
August 2013, Zhongguo shi yan xue ye xue za zhi,
Xu-Dong Ma, and Ting Zhao, and Yi-Qun Huang
August 2011, Zhongguo shi yan xue ye xue za zhi,
Xu-Dong Ma, and Ting Zhao, and Yi-Qun Huang
March 2001, Archives of dermatological research,
Xu-Dong Ma, and Ting Zhao, and Yi-Qun Huang
June 2011, Zhongguo shi yan xue ye xue za zhi,
Xu-Dong Ma, and Ting Zhao, and Yi-Qun Huang
January 1980, Leukemia research,
Xu-Dong Ma, and Ting Zhao, and Yi-Qun Huang
August 2014, Zhongguo shi yan xue ye xue za zhi,
Xu-Dong Ma, and Ting Zhao, and Yi-Qun Huang
September 2017, Molecular medicine reports,
Xu-Dong Ma, and Ting Zhao, and Yi-Qun Huang
October 2022, Zhongguo shi yan xue ye xue za zhi,
Xu-Dong Ma, and Ting Zhao, and Yi-Qun Huang
April 2012, Zhongguo shi yan xue ye xue za zhi,
Copied contents to your clipboard!