[Investigation of 5-bromo-2'-deoxyuridine labelling mice retinal progenitor cells]. 2013

Xuerong Sun, and Zhizhang Dong, and Fei Deng, and Huiling Hu, and Jian Ge
Institute of Aging Research, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical College, Dongguan 523000, China.

BrdU (5-Bromo-2'-deoxyuridine) is usually used to label the mitotic cells as well as to trace reagent in cell transplation. However, BrdU could also exert some side effect on cellular biological characteristics upon inappropriate use. To explore the appropriate concentration of BrdU for labelling retinal progenitor cells (RPCs), we co-cultured Embryonic day (E) 17. 5 RPCs with different concentrations of BrdU, which were 0.2, 1, 5 and 10 micromol/L, respectively. After 48 hours, the RPCs were proliferation- or differentiation-cultured. Immunofluorescence was used to detect the BrdU-positive ratio and differentiation potential. Cell count was used to evaluate proliferation ability, and lactate dehydrogenase (LDH) release assay was used to monitor cytotoxicity. The results showed that 0.2 micromol/ L BrdU could not label RPCs clearly, while BrdU of 1, 5 or 10 micromol/L could label the RPCs with similar ratios. 1 micromol/L BrdU displayed no obvious cytotoxicity and showed no obvious effect on the proliferation and differentiation ability. However, 5 micromol/L or 10 micromol/L BrdU could evidently inhibit RPCs proliferation, partly due to the cytotoxicity effect. Furthermore, 10 micromol/L BrdU could inhibit the differentiation of RPCs towards MAP2-positive nerve cells, but showed no influence on the differentiation of RPCs towards GFAP- and glutamine synthetase positive glial cells. This study suggested that 1 micromol/L BrdU could be an appropriate concentration for RPCs labelling and could efficiently label RPCs without obvious side effect.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D001973 Bromodeoxyuridine A nucleoside that substitutes for thymidine in DNA and thus acts as an antimetabolite. It causes breaks in chromosomes and has been proposed as an antiviral and antineoplastic agent. It has been given orphan drug status for use in the treatment of primary brain tumors. BUdR,BrdU,Bromouracil Deoxyriboside,Broxuridine,5-Bromo-2'-deoxyuridine,5-Bromodeoxyuridine,NSC-38297,5 Bromo 2' deoxyuridine,5 Bromodeoxyuridine,Deoxyriboside, Bromouracil
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013194 Staining and Labeling The marking of biological material with a dye or other reagent for the purpose of identifying and quantitating components of tissues, cells or their extracts. Histological Labeling,Staining,Histological Labelings,Labeling and Staining,Labeling, Histological,Labelings, Histological,Stainings
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Xuerong Sun, and Zhizhang Dong, and Fei Deng, and Huiling Hu, and Jian Ge
April 1968, The New England journal of medicine,
Xuerong Sun, and Zhizhang Dong, and Fei Deng, and Huiling Hu, and Jian Ge
October 1979, In vitro,
Xuerong Sun, and Zhizhang Dong, and Fei Deng, and Huiling Hu, and Jian Ge
April 1988, Journal of immunological methods,
Xuerong Sun, and Zhizhang Dong, and Fei Deng, and Huiling Hu, and Jian Ge
January 2012, Photochemistry and photobiology,
Xuerong Sun, and Zhizhang Dong, and Fei Deng, and Huiling Hu, and Jian Ge
September 1973, Biochemistry,
Xuerong Sun, and Zhizhang Dong, and Fei Deng, and Huiling Hu, and Jian Ge
November 1993, Gut,
Xuerong Sun, and Zhizhang Dong, and Fei Deng, and Huiling Hu, and Jian Ge
January 2022, International journal of molecular sciences,
Xuerong Sun, and Zhizhang Dong, and Fei Deng, and Huiling Hu, and Jian Ge
July 1977, In vitro,
Xuerong Sun, and Zhizhang Dong, and Fei Deng, and Huiling Hu, and Jian Ge
February 1981, British journal of experimental pathology,
Xuerong Sun, and Zhizhang Dong, and Fei Deng, and Huiling Hu, and Jian Ge
September 1984, Archives of biochemistry and biophysics,
Copied contents to your clipboard!