Discriminating between 5-HT₃A and 5-HT₃AB receptors. 2013

A J Thompson, and S C R Lummis
Department of Biochemistry, University of Cambridge, Cambridge, UK. ajt44@cam.ac.uk

The 5-HT3B subunit was first cloned in 1999, and co-expression with the 5-HT3A subunit results in heteromeric 5-HT₃AB receptors that are functionally distinct from homomeric 5-HT₃A receptors. The affinities of competitive ligands at the two receptor subtypes are usually similar, but those of non-competitive antagonists that bind in the pore often differ. A competitive ligand and allosteric modulator that distinguishes 5-HT₃A from 5-HT₃AB receptors has recently been described, and the number of non-competitive antagonists identified with this ability has increased in recent years. In this review, we discuss the differences between 5-HT₃A and 5-HT₃AB receptors and describe the possible sites of action of compounds that can distinguish between them.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000494 Allosteric Regulation The modification of the reactivity of ENZYMES by the binding of effectors to sites (ALLOSTERIC SITES) on the enzymes other than the substrate BINDING SITES. Regulation, Allosteric,Allosteric Regulations,Regulations, Allosteric
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000932 Antiemetics Drugs used to prevent NAUSEA or VOMITING. Anti-emetic,Antiemetic,Antiemetic Agent,Antiemetic Drug,Anti-Emetic Effect,Anti-Emetic Effects,Anti-emetics,Antiemetic Agents,Antiemetic Drugs,Antiemetic Effect,Antiemetic Effects,Agent, Antiemetic,Agents, Antiemetic,Anti Emetic Effect,Anti Emetic Effects,Anti emetic,Anti emetics,Drug, Antiemetic,Drugs, Antiemetic,Effect, Anti-Emetic,Effect, Antiemetic,Effects, Anti-Emetic,Effects, Antiemetic
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding

Related Publications

A J Thompson, and S C R Lummis
July 2003, Journal of medicinal chemistry,
A J Thompson, and S C R Lummis
August 2000, International journal of immunopharmacology,
A J Thompson, and S C R Lummis
November 2012, The Journal of biological chemistry,
A J Thompson, and S C R Lummis
November 2000, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
A J Thompson, and S C R Lummis
January 2007, Neuroscience and biobehavioral reviews,
A J Thompson, and S C R Lummis
October 1989, Lancet (London, England),
A J Thompson, and S C R Lummis
December 2021, Biomolecules,
A J Thompson, and S C R Lummis
January 1987, Journal of psychopharmacology (Oxford, England),
Copied contents to your clipboard!