Drug-loaded zein nanofibers prepared using a modified coaxial electrospinning process. 2013

Weidong Huang, and Tao Zou, and Shengfang Li, and Jinqiu Jing, and Xianyou Xia, and Xianli Liu
School of Chemical and Materials Engineering, Hubei Polytechnic University, 16 North Guilin Road, Huangshi, 435003, China. weydong@163.com

This study investigated the preparation of drug-loaded fibers using a modified coaxial electrospinning process, in which only unspinnable solvent was used as sheath fluid. With zein/ibuprofen (IBU) co-dissolving solution and N, N-dimethylformamide as core and sheath fluids, respectively, the drug-loaded zein fibers could be generated continuously and smoothly without any clogging of the spinneret. Field emission scanning electron microscopy and transmission electron microscopy observations demonstrated that the fibers had ribbon morphology with a smooth surface. Their average diameters were 0.94±0.34 and 0.67±0.21 μm when the sheath-to-core flow rate ratios were taken as 0.11 and 0.25, respectively. X-ray diffraction and differential scanning calorimetry verified that IBU was in an amorphous state in all fiber composites. Fourier transform infrared spectra showed that zein had good compatibility with IBU owing to hydrogen bonding. In vitro dissolution tests showed that all the fibers could provide sustained drug release files via a typical Fickian diffusion mechanism. The modified coaxial electrospinning process reported here can expand the capability of electrospinning in generating fibers and provides a new manner for developing novel drug delivery systems.

UI MeSH Term Description Entries
D007052 Ibuprofen A non-steroidal anti-inflammatory agent with analgesic, antipyretic, and anti-inflammatory properties Advil,Benzeneacetic Acid, alpha-methyl-4-(2-methylpropyl)- trimethylsilyl ester,Brufen,Ibumetin,Ibuprofen, (+-)-Isomer,Ibuprofen, (R)-Isomer,Ibuprofen, (S)-Isomer,Ibuprofen, Aluminum Salt,Ibuprofen, Calcium Salt,Ibuprofen, Copper (2+) Salt,Ibuprofen, Magnesium Salt,Ibuprofen, Potassium Salt,Ibuprofen, Sodium Salt,Ibuprofen, Zinc Salt,Ibuprofen-Zinc,Motrin,Nuprin,Rufen,Salprofen,Trauma-Dolgit Gel,alpha-Methyl-4-(2-methylpropyl)benzeneacetic Acid,Ibuprofen Zinc,Trauma Dolgit Gel
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D002152 Calorimetry, Differential Scanning Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample. Differential Thermal Analysis, Calorimetric,Calorimetric Differential Thermal Analysis,Differential Scanning Calorimetry,Scanning Calorimetry, Differential
D002626 Chemistry, Pharmaceutical Chemistry dealing with the composition and preparation of agents having PHARMACOLOGIC ACTIONS or diagnostic use. Medicinal Chemistry,Chemistry, Pharmaceutic,Pharmaceutic Chemistry,Pharmaceutical Chemistry,Chemistry, Medicinal
D003692 Delayed-Action Preparations Dosage forms of a drug that act over a period of time by controlled-release processes or technology. Controlled Release Formulation,Controlled-Release Formulation,Controlled-Release Preparation,Delayed-Action Preparation,Depot Preparation,Depot Preparations,Extended Release Formulation,Extended Release Preparation,Prolonged-Action Preparation,Prolonged-Action Preparations,Sustained Release Formulation,Sustained-Release Preparation,Sustained-Release Preparations,Timed-Release Preparation,Timed-Release Preparations,Controlled-Release Formulations,Controlled-Release Preparations,Extended Release Formulations,Extended Release Preparations,Slow Release Formulation,Sustained Release Formulations,Controlled Release Formulations,Controlled Release Preparation,Controlled Release Preparations,Delayed Action Preparation,Delayed Action Preparations,Formulation, Controlled Release,Formulations, Controlled Release,Prolonged Action Preparation,Release Formulation, Controlled,Release Formulations, Controlled,Sustained Release Preparation,Timed Release Preparation,Timed Release Preparations
D004058 Diffusion The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT. Diffusions
D004126 Dimethylformamide A formamide in which the amino hydrogens are replaced by methyl groups. N,N-Dimethylformamide,N,N Dimethylformamide
D004337 Drug Carriers Forms to which substances are incorporated to improve the delivery and the effectiveness of drugs. Drug carriers are used in drug-delivery systems such as the controlled-release technology to prolong in vivo drug actions, decrease drug metabolism, and reduce drug toxicity. Carriers are also used in designs to increase the effectiveness of drug delivery to the target sites of pharmacological actions. Liposomes, albumin microspheres, soluble synthetic polymers, DNA complexes, protein-drug conjugates, and carrier erythrocytes among others have been employed as biodegradable drug carriers. Drug Carrier
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D000894 Anti-Inflammatory Agents, Non-Steroidal Anti-inflammatory agents that are non-steroidal in nature. In addition to anti-inflammatory actions, they have analgesic, antipyretic, and platelet-inhibitory actions. They act by blocking the synthesis of prostaglandins by inhibiting cyclooxygenase, which converts arachidonic acid to cyclic endoperoxides, precursors of prostaglandins. Inhibition of prostaglandin synthesis accounts for their analgesic, antipyretic, and platelet-inhibitory actions; other mechanisms may contribute to their anti-inflammatory effects. Analgesics, Anti-Inflammatory,Aspirin-Like Agent,Aspirin-Like Agents,NSAID,Non-Steroidal Anti-Inflammatory Agent,Non-Steroidal Anti-Inflammatory Agents,Nonsteroidal Anti-Inflammatory Agent,Anti Inflammatory Agents, Nonsteroidal,Antiinflammatory Agents, Non Steroidal,Antiinflammatory Agents, Nonsteroidal,NSAIDs,Nonsteroidal Anti-Inflammatory Agents,Agent, Aspirin-Like,Agent, Non-Steroidal Anti-Inflammatory,Agent, Nonsteroidal Anti-Inflammatory,Anti-Inflammatory Agent, Non-Steroidal,Anti-Inflammatory Agent, Nonsteroidal,Anti-Inflammatory Analgesics,Aspirin Like Agent,Aspirin Like Agents,Non Steroidal Anti Inflammatory Agent,Non Steroidal Anti Inflammatory Agents,Nonsteroidal Anti Inflammatory Agent,Nonsteroidal Anti Inflammatory Agents,Nonsteroidal Antiinflammatory Agents

Related Publications

Weidong Huang, and Tao Zou, and Shengfang Li, and Jinqiu Jing, and Xianyou Xia, and Xianli Liu
January 2014, Nanoscale research letters,
Weidong Huang, and Tao Zou, and Shengfang Li, and Jinqiu Jing, and Xianyou Xia, and Xianli Liu
January 2012, International journal of nanomedicine,
Weidong Huang, and Tao Zou, and Shengfang Li, and Jinqiu Jing, and Xianyou Xia, and Xianli Liu
June 2019, Nanomaterials (Basel, Switzerland),
Weidong Huang, and Tao Zou, and Shengfang Li, and Jinqiu Jing, and Xianyou Xia, and Xianli Liu
July 2019, Pharmaceutics,
Weidong Huang, and Tao Zou, and Shengfang Li, and Jinqiu Jing, and Xianyou Xia, and Xianli Liu
October 2011, Nanotechnology,
Weidong Huang, and Tao Zou, and Shengfang Li, and Jinqiu Jing, and Xianyou Xia, and Xianli Liu
October 2012, Carbohydrate polymers,
Weidong Huang, and Tao Zou, and Shengfang Li, and Jinqiu Jing, and Xianyou Xia, and Xianli Liu
October 2013, International journal of molecular sciences,
Weidong Huang, and Tao Zou, and Shengfang Li, and Jinqiu Jing, and Xianyou Xia, and Xianli Liu
August 2019, Polymers,
Weidong Huang, and Tao Zou, and Shengfang Li, and Jinqiu Jing, and Xianyou Xia, and Xianli Liu
November 2010, Acta biomaterialia,
Weidong Huang, and Tao Zou, and Shengfang Li, and Jinqiu Jing, and Xianyou Xia, and Xianli Liu
November 2014, Nanotechnology,
Copied contents to your clipboard!