Enzymic and physicochemical properties of Streptomyces griseus trypsin. 1975

R W Olafson, and L B Smillie

Streptomyces griseus trypsin has been isolated from Pronase by ion-exchange chromatography on CM-Sephadex and SE-Sephadex. The isolated enzyme was homogeneous by the criteria tested except for a low degree of contamination by an enzyme with nontryptic activity. The latter could be partially resolved by chromatography on Bio-Rex 70. The molar absorbancy at 280 nm was found to be 3.96 times 10-4 M-1/cm and the E1cm1% was found to be 17.3. The molecular weight was 22,800 plus or minus 800. The enzyme was found to be stable at 0 degrees from pH 2 to 10. At 30 degrees the enzyme was maximally stable at pH 3-4 and significantly stabilized in the neutral and alkaline range by 15 mM Ca2+. Some evidence was obtained for a reversible denaturation of the enzyme at pH 12.0 and 2.0. The K-m for N-alpha-benzoyl-L-arginine ethyl ester at pH 8.0 in 20 mM CaCl2-0.1 M KCl-10 mM Tris-HCl buffer at 30 degrees was found to be 7.7 plus or minus 1.9 times 10-6 M and the esterase activity was observed to be dependent on an ionizing group with pK-a equals 5.85. In 2H2O this pKa was increased to 6.35 and the rate of hydrolysis dicreased threefold. The rate of hydrolysis was independent of pH between 8 and 10. The inhibition of the enzyme with L-1-chloro-3-tosylamido-4-phenyl-2-butanone was shown to be associated with the alkylation of its single histidine residue. This residue is present in a homologous amino acid sequence as the active-site histidine in trypsin and chymotrypsin. Optical rotatory dispersion and circular dichroism measurements over the pH range 5.3-10.5 indicated no significant conformational change until the pH was increased above 10.1. The observation that, under the conditions tested, acetylation and carbamylation of the NH2-terminal valine were incomplete is consistent with the view that this group is buried as an ion pair and only becomes available for deprotonation and reaction upon denaturation of the enzyme at pH values greater than 10.0.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004355 Drug Stability The chemical and physical integrity of a pharmaceutical product. Drug Shelf Life,Drugs Shelf Lives,Shelf Life, Drugs,Drug Stabilities,Drugs Shelf Life,Drugs Shelf Live,Life, Drugs Shelf,Shelf Life, Drug,Shelf Live, Drugs,Shelf Lives, Drugs
D004950 Esterases Any member of the class of enzymes that catalyze the cleavage of an ester bond and result in the addition of water to the resulting molecules. Esterase
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000107 Acetylation Formation of an acetyl derivative. (Stedman, 25th ed) Acetylations
D000478 Alkylation The covalent bonding of an alkyl group to an organic compound. It can occur by a simple addition reaction or by substitution of another functional group. Alkylations
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino

Related Publications

R W Olafson, and L B Smillie
December 1981, Indian journal of biochemistry & biophysics,
R W Olafson, and L B Smillie
April 2013, Sheng wu gong cheng xue bao = Chinese journal of biotechnology,
R W Olafson, and L B Smillie
January 1980, Ukrainskii biokhimicheskii zhurnal (1978),
R W Olafson, and L B Smillie
September 1968, The Biochemical journal,
R W Olafson, and L B Smillie
October 1974, Journal of bacteriology,
R W Olafson, and L B Smillie
November 1983, Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire,
R W Olafson, and L B Smillie
August 2003, Biochemistry,
R W Olafson, and L B Smillie
December 1991, Biochemical and biophysical research communications,
R W Olafson, and L B Smillie
December 1984, Biochemistry,
Copied contents to your clipboard!