Kinetics and specificity of T4 polynucleotide kinase. 1975

J R Lillehaug, and K Kleppe

The kinetics of T4 polynucleotide kinase has been investigated at pH 8.0 and 37 degrees. Double reciprocal plots of initial rates vs. substrate concentrations as well as product inhibition studies have indicated that the enzyme reacts according to the ordered sequential mechanism shown in eq 2 in the text for phosphorylation of a DNA molecule. Based on this mechanism the rate equation for the overall reaction was deduced and the various kinetic constants estimated. Hill plots indicated little or no interaction between active sites in the enzyme. The apparent Michaelis constants and V-max were determined at a fixed ATP concentration, 66 muM, for a number of different substrates varying in chain length, base composition, and nature of the sugar, and a wide variation was found. For the nucleoside 3'-monophosphates tested both the apparent Michaelis constant and V-max values were from approximately 2 to 5 times larger than for the corresponding oligonucleotide. The following orders were obtained with regard to apparent Michaelis constants and V-max for the nucleoside 3'-monophosphates investigated: Michaelis constant, rGP greater than rUp greater than rCp greater than rAp greater than dTp; V-max, rGp greater than rCp greater than rAp greater than dTp greater than rUp. Somewhat similar results were also obtained with the deoxyoligonucleotides tested.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D011116 Polynucleotide 5'-Hydroxyl-Kinase An enzyme that catalyzes the transfer of a phosphate group to the 5'-terminal hydroxyl groups of DNA and RNA. EC 2.7.1.78. Polynucleotide Hydroxylkinase,Polynucleotide Kinase,5'-Hydroxylpolynucleotide Kinase,DNA 5'-Hydroxylkinase,DNA Kinase,Polynucleotide 5'-Hydroxyl Kinase,Polynucleotide Hydroxykinase,5' Hydroxylpolynucleotide Kinase,5'-Hydroxyl Kinase, Polynucleotide,5'-Hydroxyl-Kinase, Polynucleotide,5'-Hydroxylkinase, DNA,DNA 5' Hydroxylkinase,Hydroxykinase, Polynucleotide,Hydroxylkinase, Polynucleotide,Kinase, 5'-Hydroxylpolynucleotide,Kinase, DNA,Kinase, Polynucleotide,Kinase, Polynucleotide 5'-Hydroxyl,Polynucleotide 5' Hydroxyl Kinase
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D003854 Deoxyribonucleotides A purine or pyrimidine base bonded to a DEOXYRIBOSE containing a bond to a phosphate group. Deoxyribonucleotide
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004267 DNA Viruses Viruses whose nucleic acid is DNA. DNA Virus,Virus, DNA,Viruses, DNA
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

J R Lillehaug, and K Kleppe
January 1986, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
J R Lillehaug, and K Kleppe
January 1981, Gene amplification and analysis,
J R Lillehaug, and K Kleppe
January 1970, Molecular & general genetics : MGG,
J R Lillehaug, and K Kleppe
March 1977, European journal of biochemistry,
J R Lillehaug, and K Kleppe
November 1977, Biochemistry,
J R Lillehaug, and K Kleppe
May 2012, Proceedings of the National Academy of Sciences of the United States of America,
J R Lillehaug, and K Kleppe
December 1973, Biochemistry,
J R Lillehaug, and K Kleppe
February 1986, Nucleic acids research,
J R Lillehaug, and K Kleppe
July 2001, The Journal of biological chemistry,
Copied contents to your clipboard!