The binding of hemoglobin to membranes of normal and sickle erythrocytes. 1975

S Fischer, and R L Nagel, and R M Bookchin, and E F Roth, and I Tellez-Nagel

The binding of hemoglobins A, S, and A2 to red cell membranes prepared by hypotonic lysis from normal blood and blood from persons with sickle cell anemia was quantified under a variety of conditions using hemoglobin labelled by alkylation with 14C-labelled Nitrogen Mustard. Membrane morphology was examined by electron microscopy. Normal membranes were found capable of binding native hemoglobin A and hemoglobin S in similar amounts when incubated at low hemoglobin: membrane ratios, but at high ratios hemoglobin saturation levels of the membranes increased progressively for hemoglobin A, hemoglobin S and hemoglobin A2, respectively, in order of increasing electropositivity. Binding was unaffected by variations in temperature (4-22 degrees C) and altered little by the presence of sulfhydryl reagents, but was inhibited at pH levels above 7.35; disrupted at high ionic strength; and dependent on the ionic composition of the media. These findings suggest that electrostatic, but not hydrophobic or sulfhydryl bonds are important in membrane binding of the hemoglobin under the conditions studied. An increased retention of hemoglobin in preparations of membranes from red cells of patients with sickle cell anemia (homozygote S) was attributable to the dense fraction of homozygote S red cells rich in irreversibly sickled cells, and the latter membranes had a smaller residual binding capacity for new hemoglobin. This suggests that in homozygote S cells which have become irreversibly sickled cells in vivo, there are membrane changes which involve alteration and/or blockade of hemoglobin binding sites. These findings support the notion that hemoglobin participates in the dynamic structure of the red cell membrane in a manner which differs in normal and pathological states.

UI MeSH Term Description Entries
D008466 Mechlorethamine A biologic alkylating agent that exerts its cytotoxic effects by forming DNA ADDUCTS and DNA interstrand crosslinks, thereby inhibiting rapidly proliferating cells. The hydrochloride is an antineoplastic agent used to treat HODGKIN DISEASE and LYMPHOMA. Chlorethazine,Chlormethine,Mechlorethamine Oxide,Mustine,Nitrogen Mustard,Nitrogen Mustard N-Oxide,Bis(2-chloroethyl)methylamine,Caryolysine,Cloramin,Embichin,Mechlorethamine Hydrochloride,Mechlorethamine Hydrochloride N-Oxide,Mechlorethamine N-Oxide,Methylchlorethamine,Mitomen,Mustargen,NSC-10107,NSC-762,Nitrogranulogen,Nitromin,Hydrochloride N-Oxide, Mechlorethamine,Hydrochloride, Mechlorethamine,Mechlorethamine Hydrochloride N Oxide,Mechlorethamine N Oxide,N-Oxide, Mechlorethamine Hydrochloride,N-Oxide, Nitrogen Mustard,NSC 10107,NSC 762,NSC10107,NSC762,Nitrogen Mustard N Oxide
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004229 Dithiothreitol A reagent commonly used in biochemical studies as a protective agent to prevent the oxidation of SH (thiol) groups and for reducing disulphides to dithiols. Cleland Reagent,Cleland's Reagent,Sputolysin,Clelands Reagent,Reagent, Cleland,Reagent, Cleland's
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006451 Hemoglobin, Sickle An abnormal hemoglobin resulting from the substitution of valine for glutamic acid at position 6 of the beta chain of the globin moiety. The heterozygous state results in sickle cell trait, the homozygous in sickle cell anemia. Hemoglobin S,Deoxygenated Sickle Hemoglobin,Deoxyhemoglobin S,Hemoglobin SS,Hemoglobin, Deoxygenated Sickle,SS, Hemoglobin,Sickle Hemoglobin,Sickle Hemoglobin, Deoxygenated
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations

Related Publications

S Fischer, and R L Nagel, and R M Bookchin, and E F Roth, and I Tellez-Nagel
April 1990, Biochemical medicine and metabolic biology,
S Fischer, and R L Nagel, and R M Bookchin, and E F Roth, and I Tellez-Nagel
January 1979, Proceedings of the Western Pharmacology Society,
S Fischer, and R L Nagel, and R M Bookchin, and E F Roth, and I Tellez-Nagel
May 1981, Biochimica et biophysica acta,
S Fischer, and R L Nagel, and R M Bookchin, and E F Roth, and I Tellez-Nagel
April 1977, The Journal of clinical investigation,
S Fischer, and R L Nagel, and R M Bookchin, and E F Roth, and I Tellez-Nagel
June 1984, The Journal of biological chemistry,
S Fischer, and R L Nagel, and R M Bookchin, and E F Roth, and I Tellez-Nagel
May 1995, The American journal of physiology,
S Fischer, and R L Nagel, and R M Bookchin, and E F Roth, and I Tellez-Nagel
June 1990, Immunological investigations,
S Fischer, and R L Nagel, and R M Bookchin, and E F Roth, and I Tellez-Nagel
January 1981, Methods in enzymology,
S Fischer, and R L Nagel, and R M Bookchin, and E F Roth, and I Tellez-Nagel
May 1979, Journal of molecular biology,
S Fischer, and R L Nagel, and R M Bookchin, and E F Roth, and I Tellez-Nagel
February 1984, The Journal of clinical investigation,
Copied contents to your clipboard!