Dissociation of human follicle-stimulating hormone. Comparison with luteinizing hormone. 1975

L E Reichert, and R B Ramsey

Rat testis tissue receptor assays were utilized to study the kinetics of dissociation of human follicle-stimulating hormone (hFSH) and luteinizing hormone (hLH) under varying conditions of urea concentration and pH. In these competitive protein binding assays, 125I-hFSH and 125I-hLH were the radioligands and hormone dissociation was followed by a decrease in the ability of the dissociating hormone to inhibit uptake of the radioligand by tissue receptors. Rate data for dissociation of the gonadotropins were analyzed for quality of fit to first or second order integrated rate equations by nonlinear regression analysis. Treatment of hFSH with 4 M urea at pH 8 and 25 degrees for 22 hours did not result in significant dissociation, whereas in 8 M urea, over 90% dissociation was observed. The rate of dissociation of hFSH in 8 M urea was increased approximately 4-fold by raising the temperature from 25 to 37 degrees. Similar results were obtained when dissociation of hFSH was followed through use of an accepted whole animal bioassay for FSH, thus confirming the reliability of the tissue receptor assay for such dissociation studies. Kinetic studies showed that hFSH was undissociated by incubation in 6 M urea of pH 8 after 4 hours at 25 degrees. In contrast, hLH was 90% dissociated under similar conditions. This differential rate of inactivation of hLH allowed preparation of hFSH having significant reduced levels of contaminating LH activity, as determined by tissue receptor assays and by whole animal bioassays. Marked differences were noted in the rate of dissociation of hFSH and hLH under acid conditions. hFSH completely dissociated after approximately 2 min of incubation of pH 2 (25 degrees), and over 90% dissociated after 15 min of incubation at pH 3. In contrast, hLH was dissociated 60% after 20 min of incubation at pH 2 (25 degrees) and 40% dissociated after 60 min at pH 3. Neither hormone was significantly dissociated at pH 4.4 after 60 min, but hFSH showed a slightly greater rate of dissociation than did LH in the period between 1 and 23 hours of incubation at that pH. hFSH and hLH were relatively resistant to dissociation after incubation at pH 12 for 1 hour, bu;t dissociated significantly after incubation for 22 hours at that pH. The time course for dissociation of hFSH or hLH under the various conditions described above did not conform clearly to either first or second order kinetics, indicating that the over-all dissociation process represents a mixed order reaction. It appears that urea or acid-induced denaturation of one or both subunits of hLH and hFSH may occur prior to their dissociation. The very rapid rate of dissociation at acid pH values, particularly of hFSH, indicate that ionic interactions contribute importantly to the subunit association phenomenon.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D008297 Male Males
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D005260 Female Females
D005640 Follicle Stimulating Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. FSH (Follicle Stimulating Hormone),Follicle-Stimulating Hormone,Follitropin
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

L E Reichert, and R B Ramsey
January 1969, Vitamins and hormones,
L E Reichert, and R B Ramsey
September 1972, The Journal of endocrinology,
L E Reichert, and R B Ramsey
December 1978, The Journal of endocrinology,
L E Reichert, and R B Ramsey
January 1988, Acta endocrinologica. Supplementum,
L E Reichert, and R B Ramsey
September 1991, Human reproduction (Oxford, England),
Copied contents to your clipboard!