Phase-dependent reflex reversal in human leg muscles during walking. 1990

J F Yang, and R B Stein
Department of Physiology, University of Alberta, Edmonton, Canada.

1. Reflex responses during walking were elicited in humans by stimulation of the tibial nerve at the ankle. The stimulus intensity was controlled by monitoring the M-wave from an intrinsic foot muscle. Responses were observed in the ipsilateral tibialis anterior (TA), soleus (SO), and rectus femoris (RF) muscles. The most reproducible responses were observed at a middle latency between 50 and 90 ms. The responses were most likely of cutaneous origin, because they closely resembled the responses to stimulation of a purely cutaneous nerve, the sural nerve. 2. A reversal in the direction of the middle latency response from excitation to inhibition was observed for the first time within single muscles during walking. Evidence for a reversal was seen in all three muscles examined and in all seven subjects. 3. The reflex reversal could not be elicited in standing. An inhibition whose amplitude varied in a linear fashion with stimulus intensity and background activation level was always observed at middle latency. The responses elicited during standing resembled those during the stance phase of walking. The two tasks shared some common movement goals and appeared to make use of similar reflex pathways.

UI MeSH Term Description Entries
D007866 Leg The inferior part of the lower extremity between the KNEE and the ANKLE. Legs
D008124 Locomotion Movement or the ability to move from one place or another. It can refer to humans, vertebrate or invertebrate animals, and microorganisms. Locomotor Activity,Activities, Locomotor,Activity, Locomotor,Locomotor Activities
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013127 Spinal Nerves The 31 paired peripheral nerves formed by the union of the dorsal and ventral spinal roots from each spinal cord segment. The spinal nerve plexuses and the spinal roots are also included. Nerve, Spinal,Nerves, Spinal,Spinal Nerve
D013497 Sural Nerve A branch of the tibial nerve which supplies sensory innervation to parts of the lower leg and foot. Nerve, Sural,Nerves, Sural,Sural Nerves
D013979 Tibial Nerve The medial terminal branch of the sciatic nerve. The tibial nerve fibers originate in lumbar and sacral spinal segments (L4 to S2). They supply motor and sensory innervation to parts of the calf and foot. Medial Plantar Nerve,Posterior Tibial Nerve,Medial Plantar Nerves,Nerve, Medial Plantar,Nerve, Posterior Tibial,Nerve, Tibial,Nerves, Medial Plantar,Nerves, Posterior Tibial,Nerves, Tibial,Plantar Nerve, Medial,Plantar Nerves, Medial,Posterior Tibial Nerves,Tibial Nerve, Posterior,Tibial Nerves,Tibial Nerves, Posterior

Related Publications

J F Yang, and R B Stein
February 1975, Brain research,
J F Yang, and R B Stein
January 2002, Advances in experimental medicine and biology,
J F Yang, and R B Stein
February 1980, Archives internationales de physiologie et de biochimie,
J F Yang, and R B Stein
January 1990, Experimental brain research,
J F Yang, and R B Stein
January 1990, Journal of biomedical engineering,
J F Yang, and R B Stein
September 1991, Journal of neurophysiology,
J F Yang, and R B Stein
August 1981, Electroencephalography and clinical neurophysiology,
J F Yang, and R B Stein
May 2013, Journal of neurophysiology,
Copied contents to your clipboard!