Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. II. Complex spikes. 1990

L S Stone, and S G Lisberger
Department of Physiology, University of California, San Francisco 94143.

1. We report the complex-spike responses of two groups of Purkinje cells (P-cells). The cell were classified according to their simple-spike firing during smooth eye movements evoked by visual and vestibular stimuli with the use of established criteria (Lisberger and Fuchs 1978; Stone and Lisberger 1990). During pursuit with the head fixed, ipsi gaze-velocity P-cells (GVP-cells) showed increased simple-spike firing when gaze moved toward the side of the recording, whereas down GVP-cells showed increased simple-spike firing when gaze moved downward. 2. During pursuit of sinusoidal target motion, the complex-spike firing rate was modulated out-of-phase with the simple-spike firing rate. Ipsi GVP-cells showed increased complex-spike firing during pursuit away from the side of the recording, and down GVP-cells showed increased complex-spike firing during upward pursuit. The strength of the complex-spike response increased as a function of the frequency of sinusoidal target motion. 3. GVP-cells showed directionally selective complex-spike responses during the initiation of pursuit to ramp target motion. Ipsi GVP-cells had increased complex-spike firing 100 ms after the onset of contralaterally directed target motion and decreased complex-spike activity after the onset of ipsilaterally directed target motion. Down GVP-cells had increased complex-spike firing 100 ms after the onset of upward target motion and decreased firing after the onset of downward target motion. As during sinusoidal target motion, each cell's simple- and complex-spike responses had the opposite directional preferences. 4. When the monkeys fixated a stationary target during a transient vestibular stimulus, the retinal slip caused by the 14-ms latency of the vestibuloocular reflex (VOR) affected the complex-spike firing rate. For ipsi GVP-cells, ipsilateral head motion caused transient contralateral image motion and an increase in complex-spike firing. The same vestibular stimulus in darkness caused an almost identical eye movement but had no effect on complex-spike firing. We conclude that complex spikes in ipsi GVP-cells are driven by contralaterally directed image motion. 5. To determine the events surrounding complex-spike firing during pursuit, we triggered averages of eye and target velocity on the occurrence of complex spikes during pursuit of sine-wave target motion. The averages revealed a transient pulse of retinal image motion that peaked approximately 100 ms before the complex spike. We conclude that complex spikes during steady-state pursuit are driven by the retinal slip associated with imperfect pursuit.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008251 Macaca A genus of the subfamily CERCOPITHECINAE, family CERCOPITHECIDAE, consisting of 16 species inhabiting forests of Africa, Asia, and the islands of Borneo, Philippines, and Celebes. Ape, Barbary,Ape, Black,Ape, Celebes,Barbary Ape,Black Ape,Celebes Ape,Macaque,Apes, Barbary,Apes, Black,Apes, Celebes,Barbary Apes,Black Apes,Celebes Apes,Macacas,Macaques
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D008297 Male Males
D009039 Motion Perception The real or apparent movement of objects through the visual field. Movement Perception,Perception, Motion,Perception, Movement
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D011698 Pursuit, Smooth Eye movements that are slow, continuous, and conjugate and occur when a fixed object is moved slowly. Pursuits, Smooth,Smooth Pursuit,Smooth Pursuits
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D005133 Eye Movements Voluntary or reflex-controlled movements of the eye. Eye Movement,Movement, Eye,Movements, Eye
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

L S Stone, and S G Lisberger
December 2002, Annals of the New York Academy of Sciences,
L S Stone, and S G Lisberger
March 1982, The Journal of physiology,
L S Stone, and S G Lisberger
November 1981, Journal of neurophysiology,
L S Stone, and S G Lisberger
January 1976, Vision research,
Copied contents to your clipboard!