Dynamic analysis of sensory-inhibitory interactions in crayfish stretch receptor neurons. 1990

L C Barrio, and W Buño
Neurofisiología, Instituto Cajal, Madrid, Spain.

1. The effects of regular and random inhibition at moderate rates on the sensory response evoked by sinusoidal stretches were investigated in slowly and rapidly adapting stretch receptors of crayfish (RM1 and RM2, respectively). 2. Although the RM1 has pacemaker properties and the RM2 is spontaneously silent, inhibitory postsynaptic potential (IPSP) effects were similar in both mechanosensory neurons. The most common consequence was the expected reduction of the sensory response and the increase of the elongation needed to reach firing threshold. With regular IPSPs there were regions where pre- and postsynaptic spikes alternated at fixed integer ratios, usually 1:1, more rarely 1:2 and 1:3. Increases or decreases of the sensory excitation caused sudden postsynaptic accelerations or decelerations when specific length bounds were crossed and where pre- and postsynaptic alternations changed to lower (e.g., from 1:1 to 1:2) or higher ratios (e.g., from 1:2 to 1:1), respectively. 3. Paradoxical effects were also observed because increasing or decreasing the inhibitory rate for a given alternation ratio (e.g., 1:1) accelerated or decelerated the output rate, respectively. Alternations and paradoxical behaviors disappeared with IPSP pattern irregularization. Random IPSPs strongly irregularized the receptor's output. Inhibition, especially if the pattern was irregular, could excite under special conditions. 4. With regular IPSPs, mechanical sensitivity became zero at the lengths at which receptors were silenced, low during alternations, and maximum at transitions between successive alternation ratios. Irregular IPSPs did not have this delinearizing consequence. 5. In conclusion, inhibition introduced important complex modifications in the coding of mechanosensory information. Effects were similar in both receptor types, indicating that self-sustained oscillations are not fundamental. The observed changes were critically dependent on pre- and postsynaptic rate and pattern. They cannot be explained by simple summation of converging sensory and inhibitory inputs and represent another observation of the complex dynamic behavior of periodically driven nonlinear systems.

UI MeSH Term Description Entries
D008297 Male Males
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D003400 Astacoidea A superfamily of various freshwater CRUSTACEA, in the infraorder Astacidea, comprising the crayfish. Common genera include Astacus and Procambarus. Crayfish resemble lobsters, but are usually much smaller. Astacus,Crayfish,Procambarus,Astacoideas,Crayfishs
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012677 Sensation The process in which specialized SENSORY RECEPTOR CELLS transduce peripheral stimuli (physical or chemical) into NERVE IMPULSES which are then transmitted to the various sensory centers in the CENTRAL NERVOUS SYSTEM. Sensory Function,Organoleptic,Function, Sensory,Functions, Sensory,Sensations,Sensory Functions
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

L C Barrio, and W Buño
September 1981, Federation proceedings,
L C Barrio, and W Buño
May 1969, The Journal of general physiology,
L C Barrio, and W Buño
November 1964, Science (New York, N.Y.),
L C Barrio, and W Buño
November 1970, Nature,
L C Barrio, and W Buño
June 1972, Iyo denshi to seitai kogaku. Japanese journal of medical electronics and biological engineering,
L C Barrio, and W Buño
November 1959, The Journal of general physiology,
L C Barrio, and W Buño
September 1973, Journal of neurophysiology,
Copied contents to your clipboard!