Macrophage fusion is controlled by the cytoplasmic protein tyrosine phosphatase PTP-PEST/PTPN12. 2013

Inmoo Rhee, and Dominique Davidson, and Cleiton Martins Souza, and Jean Vacher, and André Veillette
Laboratory of Molecular Oncology, Clinical Research Institute of Montréal, Montréal, Québec, Canada.

Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as β-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D010010 Osteoclasts A large multinuclear cell associated with the BONE RESORPTION. An odontoclast, also called cementoclast, is cytomorphologically the same as an osteoclast and is involved in CEMENTUM resorption. Odontoclasts,Cementoclast,Cementoclasts,Odontoclast,Osteoclast
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002459 Cell Fusion Fusion of somatic cells in vitro or in vivo, which results in somatic cell hybridization. Cell Fusions,Fusion, Cell,Fusions, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015726 Giant Cells Multinucleated masses produced by the fusion of many cells; often associated with viral infections. In AIDS, they are induced when the envelope glycoprotein of the HIV virus binds to the CD4 antigen of uninfected neighboring T4 cells. The resulting syncytium leads to cell death and thus may account for the cytopathic effect of the virus. Giant Cells, Multinucleated,Multinucleated Giant Cells,Polykaryocytes,Syncytium,Syncytia,Cell, Giant,Cell, Multinucleated Giant,Cells, Giant,Cells, Multinucleated Giant,Giant Cell,Giant Cell, Multinucleated,Multinucleated Giant Cell,Polykaryocyte

Related Publications

Inmoo Rhee, and Dominique Davidson, and Cleiton Martins Souza, and Jean Vacher, and André Veillette
April 2020, Cardiovascular research,
Inmoo Rhee, and Dominique Davidson, and Cleiton Martins Souza, and Jean Vacher, and André Veillette
August 1994, The EMBO journal,
Inmoo Rhee, and Dominique Davidson, and Cleiton Martins Souza, and Jean Vacher, and André Veillette
February 1999, The Journal of biological chemistry,
Inmoo Rhee, and Dominique Davidson, and Cleiton Martins Souza, and Jean Vacher, and André Veillette
March 1998, The Journal of biological chemistry,
Inmoo Rhee, and Dominique Davidson, and Cleiton Martins Souza, and Jean Vacher, and André Veillette
January 2014, Cellular immunology,
Inmoo Rhee, and Dominique Davidson, and Cleiton Martins Souza, and Jean Vacher, and André Veillette
September 1997, The Journal of biological chemistry,
Inmoo Rhee, and Dominique Davidson, and Cleiton Martins Souza, and Jean Vacher, and André Veillette
January 1996, Biochemical and biophysical research communications,
Inmoo Rhee, and Dominique Davidson, and Cleiton Martins Souza, and Jean Vacher, and André Veillette
August 1993, The Journal of biological chemistry,
Inmoo Rhee, and Dominique Davidson, and Cleiton Martins Souza, and Jean Vacher, and André Veillette
March 1993, The Journal of biological chemistry,
Inmoo Rhee, and Dominique Davidson, and Cleiton Martins Souza, and Jean Vacher, and André Veillette
November 1996, Molecular and cellular biology,
Copied contents to your clipboard!