Spontaneous and sensory-evoked activity in mouse olfactory sensory neurons with defined odorant receptors. 2013

Timothy Connelly, and Agnes Savigner, and Minghong Ma
Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.

Sensory systems need to tease out stimulation-evoked activity against a noisy background. In the olfactory system, the odor response profile of an olfactory sensory neuron (OSN) is dependent on the type of odorant receptor it expresses. OSNs also exhibit spontaneous activity, which plays a role in establishing proper synaptic connections and may also increase the sensitivity of the cells. However, where the spontaneous activity originates and whether it informs sensory-evoked activity remain unclear. We addressed these questions by examining patch-clamp recordings of genetically labeled mouse OSNs with defined odorant receptors in intact olfactory epithelia. We show that OSNs expressing different odorant receptors had significantly different rates of basal activity. Additionally, OSNs expressing an inactive mutant I7 receptor completely lacked spontaneous activity, despite being able to fire action potentials in response to current injection. This finding strongly suggests that the spontaneous firing of an OSN originates from the spontaneous activation of its G protein-coupled odorant receptor. Moreover, OSNs expressing the same receptor displayed considerable variation in their spontaneous activity, and the variation was broadened upon odor stimulation. Interestingly, there is no significant correlation between the spontaneous and sensory-evoked activity in these neurons. This study reveals that the odorant receptor type determines the spontaneous firing rate of OSNs, but the basal activity does not correlate with the activity induced by near-saturated odor stimulation. The implications of these findings on olfactory information processing are discussed.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013268 Stimulation, Chemical The increase in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Stimulation,Chemical Stimulations,Stimulations, Chemical
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018034 Olfactory Receptor Neurons Neurons in the OLFACTORY EPITHELIUM with proteins (RECEPTORS, ODORANT) that bind, and thus detect, odorants. These neurons send their DENDRITES to the surface of the epithelium with the odorant receptors residing in the apical non-motile cilia. Their unmyelinated AXONS synapse in the OLFACTORY BULB of the BRAIN. Neurons, Olfactory Receptor,Olfactory Receptor Cells,Olfactory Receptor Neuron,Olfactory Sensory Cells,Olfactory Sensory Cilia,Olfactory Sensory Neurons,Cell, Olfactory Receptor,Cell, Olfactory Sensory,Cells, Olfactory Receptor,Cells, Olfactory Sensory,Cilia, Olfactory Sensory,Cilias, Olfactory Sensory,Neuron, Olfactory Receptor,Neuron, Olfactory Sensory,Neurons, Olfactory Sensory,Olfactory Receptor Cell,Olfactory Sensory Cell,Olfactory Sensory Cilias,Olfactory Sensory Neuron,Receptor Cell, Olfactory,Receptor Cells, Olfactory,Receptor Neuron, Olfactory,Receptor Neurons, Olfactory,Sensory Cell, Olfactory,Sensory Cells, Olfactory,Sensory Cilia, Olfactory,Sensory Cilias, Olfactory,Sensory Neuron, Olfactory,Sensory Neurons, Olfactory
D018035 Receptors, Odorant Proteins, usually projecting from the cilia of olfactory receptor neurons, that specifically bind odorant molecules and trigger responses in the neurons. The large number of different odorant receptors appears to arise from several gene families or subfamilies rather than from DNA rearrangement. Odorant Receptors,Olfactory Receptor Proteins,Odor Receptor Protein,Odorant Receptor,Olfactory Receptor,Olfactory Receptor Protein,Olfactory Receptors,Receptor Proteins, Odorant,Receptor Proteins, Olfactory,Odorant Receptor Proteins,Protein, Odor Receptor,Protein, Olfactory Receptor,Proteins, Odorant Receptor,Proteins, Olfactory Receptor,Receptor Protein, Odor,Receptor Protein, Olfactory,Receptor, Odorant,Receptor, Olfactory,Receptors, Olfactory
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

Timothy Connelly, and Agnes Savigner, and Minghong Ma
July 2013, The European journal of neuroscience,
Timothy Connelly, and Agnes Savigner, and Minghong Ma
June 2009, Journal of neurophysiology,
Timothy Connelly, and Agnes Savigner, and Minghong Ma
September 2008, Neural development,
Timothy Connelly, and Agnes Savigner, and Minghong Ma
August 2008, Molecular and cellular neurosciences,
Timothy Connelly, and Agnes Savigner, and Minghong Ma
June 2004, Cell,
Timothy Connelly, and Agnes Savigner, and Minghong Ma
April 2018, Molecular and cellular neurosciences,
Timothy Connelly, and Agnes Savigner, and Minghong Ma
January 1998, Bio Systems,
Timothy Connelly, and Agnes Savigner, and Minghong Ma
June 2014, Chemical senses,
Timothy Connelly, and Agnes Savigner, and Minghong Ma
October 2009, Chemical senses,
Copied contents to your clipboard!