A repeat sequence causes competition of ColE1-type plasmids. 2013

Mei-Hui Lin, and Jen-Fen Fu, and Shih-Tung Liu
Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.

Plasmid pSW200 from Pantoea stewartii contains 41 copies of 15-bp repeats and has a replicon that is homologous to that of ColE1. Although deleting the repeats (pSW207) does not change the copy number and stability of the plasmid. The plasmid becomes unstable and is rapidly lost from the host when a homoplasmid with the repeats (pSW201) is present. Deleting the repeats is found to reduce the transcriptional activity of RNAIp and RNAIIp by about 30%, indicating that the repeats promote the transcription of RNAI and RNAII, and how the RNAI that is synthesized by pSW201 inhibits the replication of pSW207. The immunoblot analysis herein demonstrates that RNA polymerase β subunit and σ(70) in the lysate from Escherichia coli MG1655 bind to a biotin-labeled DNA probe that contains the entire sequence of the repeat region. Electrophoretic mobility shift assay also reveals that purified RNA polymerase shifts a DNA probe that contains four copies of the repeats. These results thus obtained reveal that RNA polymerase holoenzyme binds to the repeats. The repeats also exchange RNA polymerase with RNAIp and RNAIIp in vitro, revealing the mechanism by which the transcription is promoted. This investigation elucidates a mechanism by which a plasmid prevents the invasion of an incompatible plasmid and maintains its stability in the host cell during evolution.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D020636 Pantoea A genus of gram-negative, facultatively anaerobic, straight rods which are motile by peritrichous flagella. Most strains produce a yellow pigment. This organism is isolated from plant surfaces, seeds, soil, and water, as well as from animals and human wounds, blood, and urine. (From Bergey's Manual of Determinative Bacteriology, 9th ed) Pantoea agglomerans
D024202 Electrophoretic Mobility Shift Assay An electrophoretic technique for assaying the binding of one compound to another. Typically one compound is labeled to follow its mobility during electrophoresis. If the labeled compound is bound by the other compound, then the mobility of the labeled compound through the electrophoretic medium will be retarded. Gelshift Analysis,Mobility Shift Assay,Band Shift Mobility Assay,Bandshift Mobility Assay,EMSA Electrophoretic Technique,Gel Retardation Assay,Gel Shift Analysis,Supershift Mobility Assay,Analyses, Gel Shift,Analysis, Gel Shift,Assay, Bandshift Mobility,Assay, Gel Retardation,Assay, Mobility Shift,Assay, Supershift Mobility,Assays, Bandshift Mobility,Assays, Gel Retardation,Assays, Mobility Shift,Assays, Supershift Mobility,Bandshift Mobility Assays,EMSA Electrophoretic Techniques,Electrophoretic Technique, EMSA,Electrophoretic Techniques, EMSA,Gel Retardation Assays,Gel Shift Analyses,Mobility Assay, Bandshift,Mobility Assay, Supershift,Mobility Assays, Bandshift,Mobility Assays, Supershift,Mobility Shift Assays,Supershift Mobility Assays,Technique, EMSA Electrophoretic,Techniques, EMSA Electrophoretic

Related Publications

Mei-Hui Lin, and Jen-Fen Fu, and Shih-Tung Liu
January 1980, Molecular & general genetics : MGG,
Mei-Hui Lin, and Jen-Fen Fu, and Shih-Tung Liu
December 1986, Journal of theoretical biology,
Mei-Hui Lin, and Jen-Fen Fu, and Shih-Tung Liu
January 1979, Cold Spring Harbor symposia on quantitative biology,
Mei-Hui Lin, and Jen-Fen Fu, and Shih-Tung Liu
April 1984, Gene,
Mei-Hui Lin, and Jen-Fen Fu, and Shih-Tung Liu
January 1981, Molecular & general genetics : MGG,
Mei-Hui Lin, and Jen-Fen Fu, and Shih-Tung Liu
March 1981, Journal of bacteriology,
Mei-Hui Lin, and Jen-Fen Fu, and Shih-Tung Liu
June 1986, Journal of molecular biology,
Mei-Hui Lin, and Jen-Fen Fu, and Shih-Tung Liu
January 1979, Molecular & general genetics : MGG,
Mei-Hui Lin, and Jen-Fen Fu, and Shih-Tung Liu
April 1978, Molecular & general genetics : MGG,
Mei-Hui Lin, and Jen-Fen Fu, and Shih-Tung Liu
January 1979, Contributions to microbiology and immunology,
Copied contents to your clipboard!