Purification of the multienzyme complex for fatty acid oxidation from Pseudomonas fragi and reconstitution of the fatty acid oxidation system. 1990

S Imamura, and S Ueda, and M Mizugaki, and A Kawaguchi
Toyo Jozo Co., Shizuoka.

The multienzyme complex for fatty acid oxidation was purified from Pseudomonas fragi, which was grown on oleic acid as the sole carbon source. This complex exhibited enoyl-CoA hydratase [EC 4.2.1.17], 3-hydroxyacyl-CoA dehydrogenase [EC 1.1.1.35], 3-oxoacyl-CoA thiolase [EC 2.3.1.16], cis-3,trans-2-enoyl-CoA isomerase [EC 5.3.3.3], and 3-hydroxyacyl-CoA epimerase [EC 5.1.2.3] activities. The molecular weight of the native complex was estimated to be 240,000. Two types of subunits, with molecular weights of 73,000 and 42,000, were identified. The complex was composed of two copies each of the 73,000- and 42,000-Da subunits. The beta-oxidation system was reconstituted in vitro using the multienzyme complex, acyl-CoA synthetase and acyl-CoA oxidase. This reconstituted system completely oxidized saturated fatty acids with acyl chains of from 4 to 18 carbon atoms as well as unsaturated fatty acids having cis double bonds extending from odd-numbered carbon atoms. However, unsaturated fatty acids having cis double bonds extending from even-numbered carbon atoms were not completely oxidized to acetyl-CoA: about 5 mol of acetyl-CoA was produced from 1 mol of linoleic or alpha-linolenic acid, and about 2 mol of acetyl-CoA from 1 mol of gamma-linolenic acid. These results suggested that the 3-hydroxyacyl-CoA epimerase in the complex was not operative. When the epimerase was by-passed by the addition of 2,4-dienoyl-CoA reductase to the reconstituted system, unsaturated fatty acids with cis double bonds extending from even-numbered carbon atoms were also completely degraded to acetyl-CoA.

UI MeSH Term Description Entries
D007535 Isomerases A class of enzymes that catalyze geometric or structural changes within a molecule to form a single product. The reactions do not involve a net change in the concentrations of compounds other than the substrate and the product.(from Dorland, 28th ed) EC 5. Isomerase
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011549 Pseudomonas A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants. Chryseomonas,Pseudomona,Flavimonas
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004746 Enoyl-CoA Hydratase An enzyme that catalyzes reversibly the hydration of unsaturated fatty acyl-CoA to yield beta-hydroxyacyl-CoA. It plays a role in the oxidation of fatty acids and in mitochondrial fatty acid synthesis, has broad specificity, and is most active with crotonyl-CoA. EC 4.2.1.17. 3-Hydroxyacyl CoA Hydrolyases,3-Hydroxyacyl Dehydratases,Crotonase,Enoyl Hydrase,beta-Hydroxyacyl Dehydratases,Enoyl CoA Hydratases,beta-Hydroxyacyl-CoA Dehydrases,trans-2-Enoyl-Coenzyme A Hydratase,3 Hydroxyacyl CoA Hydrolyases,3 Hydroxyacyl Dehydratases,CoA Hydratases, Enoyl,CoA Hydrolyases, 3-Hydroxyacyl,Dehydrases, beta-Hydroxyacyl-CoA,Dehydratases, 3-Hydroxyacyl,Dehydratases, beta-Hydroxyacyl,Enoyl CoA Hydratase,Hydrase, Enoyl,Hydratase, Enoyl-CoA,Hydratase, trans-2-Enoyl-Coenzyme A,Hydratases, Enoyl CoA,Hydrolyases, 3-Hydroxyacyl CoA,beta Hydroxyacyl CoA Dehydrases,beta Hydroxyacyl Dehydratases,trans 2 Enoyl Coenzyme A Hydratase
D005231 Fatty Acids, Unsaturated FATTY ACIDS in which the carbon chain contains one or more double or triple carbon-carbon bonds. Fatty Acids, Polyunsaturated,Polyunsaturated Fatty Acid,Unsaturated Fatty Acid,Polyunsaturated Fatty Acids,Acid, Polyunsaturated Fatty,Acid, Unsaturated Fatty,Acids, Polyunsaturated Fatty,Acids, Unsaturated Fatty,Fatty Acid, Polyunsaturated,Fatty Acid, Unsaturated,Unsaturated Fatty Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D044925 Oxidoreductases Acting on CH-CH Group Donors A subclass of enzymes which includes all dehydrogenases acting on carbon-carbon bonds. This enzyme group includes all the enzymes that introduce double bonds into substrates by direct dehydrogenation of carbon-carbon single bonds. Oxidoreductases Acting on CH CH Group Donors
D044943 Fatty Acid Desaturases A family of enzymes that catalyze the stereoselective, regioselective, or chemoselective syn-dehydrogenation reactions. They function by a mechanism that is linked directly to reduction of molecular OXYGEN. Acyl CoA Desaturase,Enoyl CoA Reductase,Fatty Acid Desaturase,Fatty Acid Desaturating Enzymes,Acyl CoA Desaturases,Enoyl CoA Reductases,Acid Desaturase, Fatty,CoA Desaturase, Acyl,CoA Reductase, Enoyl,Desaturase, Acyl CoA,Desaturase, Fatty Acid,Desaturases, Fatty Acid,Reductase, Enoyl CoA,Reductases, Enoyl CoA

Related Publications

S Imamura, and S Ueda, and M Mizugaki, and A Kawaguchi
December 1997, The Biochemical journal,
S Imamura, and S Ueda, and M Mizugaki, and A Kawaguchi
September 1969, FEBS letters,
S Imamura, and S Ueda, and M Mizugaki, and A Kawaguchi
October 1969, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
S Imamura, and S Ueda, and M Mizugaki, and A Kawaguchi
April 1981, The Journal of biological chemistry,
S Imamura, and S Ueda, and M Mizugaki, and A Kawaguchi
August 2005, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
S Imamura, and S Ueda, and M Mizugaki, and A Kawaguchi
February 2006, Structure (London, England : 1993),
S Imamura, and S Ueda, and M Mizugaki, and A Kawaguchi
July 2004, The EMBO journal,
S Imamura, and S Ueda, and M Mizugaki, and A Kawaguchi
July 1969, Applied microbiology,
Copied contents to your clipboard!