The interaction of adenosine and morphine on pentylenetetrazole-induced seizure threshold in mice. 2013

Leila Moezi, and Reyhane Akbarian, and Hossein Niknahad, and Hamed Shafaroodi
Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.

Adenosine agonists or low doses of morphine exert anti-convulsant effects in different models of seizures. On the other hand, a tight interaction has been reported between morphine and adenosine in various paradigms. This study investigated the effect of the interaction of adenosine and morphine on seizure susceptibility in the intravenous mouse model of pentylenetetrazole (PTZ)-induced clonic seizures. The researchers used acute systemic administration of morphine, N(6)-cyclohexyladenosine (CHA) (a selective A1 receptor agonist), naltrexone (an opioid receptor antagonist) and 8-Cyclopentyl-1,3-dimethylxanthine (8-CPT) (a selective A1 receptor antagonist). Acute administration of morphine (0.25, 0.5 and 1 mg/kg) or CHA (0.25, 0.5, 1, 2 and 4 mg/kg) raised the threshold of seizures induced by PTZ. Non-effective dose of 8-CPT (2 mg/kg) inhibited the anticonvulsant effects of CHA (0.5 and 1 mg/kg). Combination of sub-effective doses of morphine (0.125 mg/kg) and CHA (0.125 mg/kg) increased clonic seizure latency showing the additive effect of morphine and CHA. The enhanced latency induced by combination of low doses of morphine and CHA completely reversed by 8-CPT (2 mg/kg) or naltrexone (1 mg/kg). Moreover, 8-CPT (2 mg/kg) inhibited anticonvulsant effects of morphine (0.25 and 0.5 mg/kg) and naltrexone (1 mg/kg) inhibited anticonvulsant effects of CHA (0.25, 0.5 and 1 mg/kg). Combination of low doses of 8-CPT (1 mg/kg) and naltrexone (0.5 mg/kg) inhibited the anticonvulsant effect of CHA (0.5 and 1 mg/kg). In conclusion, adenosine and morphine exhibit an additive effect on the enhancement of the pentylenetetrazole-induced seizure threshold in mice, probably through A1 or μ receptors.

UI MeSH Term Description Entries
D008297 Male Males
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009271 Naltrexone Derivative of noroxymorphone that is the N-cyclopropylmethyl congener of NALOXONE. It is a narcotic antagonist that is effective orally, longer lasting and more potent than naloxone, and has been proposed for the treatment of heroin addiction. The FDA has approved naltrexone for the treatment of alcohol dependence. Antaxone,Celupan,EN-1639A,Nalorex,Naltrexone Hydrochloride,Nemexin,ReVia,Trexan,EN 1639A,EN1639A
D009292 Narcotic Antagonists Agents inhibiting the effect of narcotics on the central nervous system. Competitive Opioid Antagonist,Narcotic Antagonist,Opioid Antagonist,Opioid Antagonists,Opioid Receptor Antagonist,Opioid Reversal Agent,Competitive Opioid Antagonists,Opioid Receptor Antagonists,Opioid Reversal Agents,Agent, Opioid Reversal,Agents, Opioid Reversal,Antagonist, Competitive Opioid,Antagonist, Narcotic,Antagonist, Opioid,Antagonist, Opioid Receptor,Antagonists, Competitive Opioid,Antagonists, Narcotic,Antagonists, Opioid,Antagonists, Opioid Receptor,Opioid Antagonist, Competitive,Opioid Antagonists, Competitive,Receptor Antagonist, Opioid,Receptor Antagonists, Opioid,Reversal Agent, Opioid,Reversal Agents, Opioid
D010433 Pentylenetetrazole A pharmaceutical agent that displays activity as a central nervous system and respiratory stimulant. It is considered a non-competitive GAMMA-AMINOBUTYRIC ACID antagonist. Pentylenetetrazole has been used experimentally to study seizure phenomenon and to identify pharmaceuticals that may control seizure susceptibility. Leptazole,Pentamethylenetetrazole,Pentetrazole,Cardiazol,Corasol,Corazol,Corazole,Korazol,Korazole,Metrazol,Metrazole,Pentazol,Pentylenetetrazol
D003292 Convulsants Substances that act in the brain stem or spinal cord to produce tonic or clonic convulsions, often by removing normal inhibitory tone. They were formerly used to stimulate respiration or as antidotes to barbiturate overdose. They are now most commonly used as experimental tools. Convulsant,Convulsant Effect,Convulsant Effects,Effect, Convulsant,Effects, Convulsant
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan

Related Publications

Leila Moezi, and Reyhane Akbarian, and Hossein Niknahad, and Hamed Shafaroodi
September 2004, Neuropharmacology,
Leila Moezi, and Reyhane Akbarian, and Hossein Niknahad, and Hamed Shafaroodi
October 2011, Epilepsy & behavior : E&B,
Leila Moezi, and Reyhane Akbarian, and Hossein Niknahad, and Hamed Shafaroodi
November 2020, Epilepsy & behavior : E&B,
Leila Moezi, and Reyhane Akbarian, and Hossein Niknahad, and Hamed Shafaroodi
July 2008, Journal of gastroenterology and hepatology,
Leila Moezi, and Reyhane Akbarian, and Hossein Niknahad, and Hamed Shafaroodi
November 2014, Pharmacology, biochemistry, and behavior,
Leila Moezi, and Reyhane Akbarian, and Hossein Niknahad, and Hamed Shafaroodi
June 2007, Epilepsy research,
Leila Moezi, and Reyhane Akbarian, and Hossein Niknahad, and Hamed Shafaroodi
April 2011, Epilepsy & behavior : E&B,
Leila Moezi, and Reyhane Akbarian, and Hossein Niknahad, and Hamed Shafaroodi
July 2016, Iranian journal of basic medical sciences,
Leila Moezi, and Reyhane Akbarian, and Hossein Niknahad, and Hamed Shafaroodi
December 1999, Metabolic brain disease,
Leila Moezi, and Reyhane Akbarian, and Hossein Niknahad, and Hamed Shafaroodi
January 2009, Seizure,
Copied contents to your clipboard!