Dormancy is not necessary or sufficient for bacterial persistence. 2013

Mehmet A Orman, and Mark P Brynildsen
Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA.

The antibiotic tolerances of bacterial persisters have been attributed to transient dormancy. While persisters have been observed to be growth inhibited prior to antibiotic exposure, we sought to determine whether such a trait was essential to the phenotype. Furthermore, we sought to provide direct experimental evidence of the persister metabolic state so as to determine whether the common assumption of metabolic inactivity was valid. Using fluorescence-activated cell sorting (FACS), a fluorescent indicator of cell division, a fluorescent measure of metabolic activity, and persistence assays, we found that bacteria that are rapidly growing prior to antibiotic exposure can give rise to persisters and that a lack of replication or low metabolic activity prior to antibiotic treatment simply increases the likelihood that a cell is a persister. Interestingly, a lack of significant growth or metabolic activity does not guarantee persistence, as the majority of even "dormant" subpopulations (>99%) were not persisters. These data suggest that persistence is far more complex than dormancy and point to additional characteristics needed to define the persister phenotype.

UI MeSH Term Description Entries
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D024901 Drug Resistance, Multiple, Bacterial The ability of bacteria to resist or to become tolerant to several structurally and functionally distinct drugs simultaneously. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Drug Resistance, Extensive, Bacterial,Drug Resistance, Extensively, Bacterial,Extensive Antibacterial Drug Resistance,Extensively Antibacterial Drug Resistance,Multidrug Resistance, Bacterial,Multiple Antibacterial Drug Resistance,Bacterial Multidrug Resistance,Bacterial Multidrug Resistances,Resistance, Bacterial Multidrug

Related Publications

Mehmet A Orman, and Mark P Brynildsen
December 2008, Injury prevention : journal of the International Society for Child and Adolescent Injury Prevention,
Mehmet A Orman, and Mark P Brynildsen
November 2023, Physical review letters,
Mehmet A Orman, and Mark P Brynildsen
January 2012, Frontiers in integrative neuroscience,
Mehmet A Orman, and Mark P Brynildsen
January 1990, Scandinavian journal of rheumatology. Supplement,
Mehmet A Orman, and Mark P Brynildsen
September 2010, Cognitive neuroscience,
Mehmet A Orman, and Mark P Brynildsen
August 2003, Fertility and sterility,
Mehmet A Orman, and Mark P Brynildsen
July 2020, The Journal of thoracic and cardiovascular surgery,
Mehmet A Orman, and Mark P Brynildsen
January 2009, American annals of the deaf,
Mehmet A Orman, and Mark P Brynildsen
June 2024, Progress in transplantation (Aliso Viejo, Calif.),
Mehmet A Orman, and Mark P Brynildsen
August 2019, Cognition,
Copied contents to your clipboard!