Tryptophan fluorescence lifetimes in lysozyme. 1975

C Formoso, and L S Forster

Tryptophan fluorescence lifetimes at pH 2 and pH 8 have been obtained for lysozyme and for lysozyme derivatives in which tryptophan-62 or tryptophan-108 or both are nonfluorescent. The lifetimes range from about 0.5 ns to 2.8 ns for the various emitting tryptophans. The tryptophan lifetimes appear to increase with exposure of tryptophan to solvent, but intramolecular contacts, probably with cystine residues, can considerably shorten the lifetime. Intertryptophanyl interactions can also affect fluorescence lifetimes. The trytophan-108 lifetime in lysozyme is shorter than in the derivative in which tryptophan-62 is oxidized; this is ascribed to energy transfer from tryptophan-108 to tryptophan-62. From the lifetime results the relative intensities emitted by specific tryptophans can be estimated, and these values also support the existence of intertryptophanyl energy transfer. The emission intensity from tryptophan-62 is greater in the presence of tryptophan-108, and the emission intensity of tryptophan-108 appears to be greater in the absence of tryptophan-62. Conformational effects accompanying chemical modification of tryptophan cannot be completely ruled out, however. The tryptophan-62 lifetime at pH 8 in lysozyme is shorter than in the derivatives, which might indicate a subtle conformational effect. Studies with tri-(N-acetyl-glucosamine)-protein complexes indicate that both the tryptophan lifetimes and the number of emitting tryptophans may be changing upon complexation. The results illustrate the usefulness and the limitations of lifetime measurements in understanding protein fluorescence.

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D009113 Muramidase A basic enzyme that is present in saliva, tears, egg white, and many animal fluids. It functions as an antibacterial agent. The enzyme catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrin. EC 3.2.1.17. Lysozyme,Leftose,N-Acetylmuramide Glycanhydrolase,Glycanhydrolase, N-Acetylmuramide,N Acetylmuramide Glycanhydrolase
D010063 Ovum A mature haploid female germ cell extruded from the OVARY at OVULATION. Egg,Egg, Unfertilized,Ova,Eggs, Unfertilized,Unfertilized Egg,Unfertilized Eggs
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003553 Cystine A covalently linked dimeric nonessential amino acid formed by the oxidation of CYSTEINE. Two molecules of cysteine are joined together by a disulfide bridge to form cystine. Copper Cystinate,L-Cystine,L Cystine
D004735 Energy Transfer The transfer of energy of a given form among different scales of motion. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed). It includes the transfer of kinetic energy and the transfer of chemical energy. The transfer of chemical energy from one molecule to another depends on proximity of molecules so it is often used as in techniques to measure distance such as the use of FORSTER RESONANCE ENERGY TRANSFER. Transfer, Energy
D005260 Female Females
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations

Related Publications

C Formoso, and L S Forster
December 1993, Biochemistry,
C Formoso, and L S Forster
January 2014, Methods in molecular biology (Clifton, N.J.),
C Formoso, and L S Forster
September 2003, Biophysical journal,
C Formoso, and L S Forster
May 1979, The Journal of biological chemistry,
C Formoso, and L S Forster
December 1996, Biophysical chemistry,
Copied contents to your clipboard!