| D008957 |
Models, Genetic |
Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. |
Genetic Models,Genetic Model,Model, Genetic |
|
| D009154 |
Mutation |
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. |
Mutations |
|
| D011088 |
DNA Ligases |
Poly(deoxyribonucleotide):poly(deoxyribonucleotide)ligases. Enzymes that catalyze the joining of preformed deoxyribonucleotides in phosphodiester linkage during genetic processes during repair of a single-stranded break in duplex DNA. The class includes both EC 6.5.1.1 (ATP) and EC 6.5.1.2 (NAD). |
DNA Joinases,DNA Ligase,Polydeoxyribonucleotide Ligases,Polydeoxyribonucleotide Synthetases,T4 DNA Ligase,DNA Ligase, T4,Joinases, DNA,Ligase, DNA,Ligase, T4 DNA,Ligases, DNA,Ligases, Polydeoxyribonucleotide,Synthetases, Polydeoxyribonucleotide |
|
| D003851 |
Deoxyribonucleases |
Enzymes which catalyze the hydrolases of ester bonds within DNA. EC 3.1.-. |
DNAase,DNase,Deoxyribonuclease,Desoxyribonuclease,Desoxyribonucleases,Nucleases, DNA,Acid DNase,Alkaline DNase,DNA Nucleases,DNase, Acid,DNase, Alkaline |
|
| D004259 |
DNA-Directed DNA Polymerase |
DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. |
DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA |
|
| D004268 |
DNA-Binding Proteins |
Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. |
DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins |
|
| D006657 |
Histones |
Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. |
Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7 |
|
| D000072481 |
DNA Ligase ATP |
ATP-dependent cellular enzyme which catalyzes DNA replication, repair and recombination through formation of internucleotide ester bonds between phosphate and deoxyribose moieties. Vertebrate cells encode three well-characterized DNA ligases, DNA ligase I, III and IV, all of which are related in structure and sequence. DNA ligases either require ATP or NAD. However, archaebacterial, viral, and some eubacterial DNA ligases are ATP-dependent. |
ATP-Dependent DNA Ligase,DNA Ligase I,DNA Ligase II,DNA Ligase III,DNA Ligase IIIalpha,DNA Ligase IV,DNA Ligases, ATP-Dependent,LIGIIIalpha Protein,Polydeoxyribonucleotide Synthase ATP,ATP Dependent DNA Ligase,ATP, DNA Ligase,ATP, Polydeoxyribonucleotide Synthase,ATP-Dependent DNA Ligases,DNA Ligase, ATP-Dependent,DNA Ligases, ATP Dependent,IIIalpha, DNA Ligase,Ligase ATP, DNA,Ligase I, DNA,Ligase II, DNA,Ligase III, DNA,Ligase IIIalpha, DNA,Ligase IV, DNA,Ligase, ATP-Dependent DNA,Ligases, ATP-Dependent DNA,Synthase ATP, Polydeoxyribonucleotide |
|
| D053903 |
DNA Breaks, Double-Stranded |
Interruptions in the sugar-phosphate backbone of DNA, across both strands adjacently. |
Double-Stranded DNA Breaks,Double-Strand DNA Breaks,Double-Stranded DNA Break,Break, Double-Strand DNA,Break, Double-Stranded DNA,Breaks, Double-Strand DNA,Breaks, Double-Stranded DNA,DNA Break, Double-Strand,DNA Break, Double-Stranded,DNA Breaks, Double Stranded,DNA Breaks, Double-Strand,Double Strand DNA Breaks,Double Stranded DNA Break,Double Stranded DNA Breaks,Double-Strand DNA Break |
|
| D059766 |
DNA End-Joining Repair |
The repair of DOUBLE-STRAND DNA BREAKS by rejoining the broken ends of DNA to each other directly. |
Non-Homologous DNA End-Joining,End-Joining DNA Repair,MMEJ DNA Repair,Microhomology-Mediated End Joining Repair,NHEJ DNA Repair,Nonhomologous DNA End-Joining,DNA End Joining Repair,DNA End-Joining, Non-Homologous,DNA End-Joining, Nonhomologous,DNA Repair, End-Joining,DNA Repair, MMEJ,DNA Repair, NHEJ,End Joining DNA Repair,End-Joining Repair, DNA,End-Joining, Non-Homologous DNA,Microhomology Mediated End Joining Repair,Non Homologous DNA End Joining,Nonhomologous DNA End Joining,Repair, DNA End-Joining,Repair, End-Joining DNA,Repair, MMEJ DNA,Repair, NHEJ DNA |
|