Simultaneous flow cytometric measurements of thrombin-induced cytosolic pH and Ca2+ fluxes in human platelets. 1990

T A Davies, and G J Weil, and E R Simons
Department of Biochemistry, Boston University School of Medicine, Massachusetts 02118.

Human platelets exhibit an extremely rapid increase in cytoplasmic Ca2+ concentrations ((Ca2+]in) and a dose-dependent cytoplasmic pH change ((pH]in) upon thrombin stimulation. A cytoplasmic alkalinization, maximal by 60 s, is preceded by a very rapid acidification, which is masked by the alkalinization when saturating thrombin doses are used. Using the pH probe 2',7'-bis-(carboxyethyl)-5(6)-carboxyfluorescein we report here the kinetics of simultaneous cytoplasmic pH and Ca2+ changes in thrombin-stimulated platelets, measured in single cells by flow cytometry. This permits analysis of the responding subpopulation. Maximal thrombin stimulation (greater than or equal to 4.5 nM) induces a dose-dependent increase in pHin from approximately 7.0 to 7.30 and a maximal [Ca2+]in transient of up to 800 nM. The Ca2+ transient coincides temporally with the rapid initial acidification, while the alkalinization is maximal considerably later. The Ca2+ transients occur maximally in each responding cell, but occur only in a subpopulation of the platelets at subsaturating (less than 4.5 nM) thrombin doses; in contrast, the dose-dependent cytoplasmic acidification appears to occur uniformly in all platelets. The rapid increase in [Ca2+]in is not dependent on the alkalinization, and the former occurs maximally in amiloride treated, Na+/H+ exchange inhibited human platelets. These results indicate that the acidification and the rise in [Ca2+]in may be interrelated, whereas the cytoplasmic alkalinization (maximal considerably later than either the acidification or the [Ca2+]in rise) may be independent of these earlier, temporally correlated increases in H+ and Ca2+ concentrations.

UI MeSH Term Description Entries
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D013917 Thrombin An enzyme formed from PROTHROMBIN that converts FIBRINOGEN to FIBRIN. Thrombase,Thrombin JMI,Thrombin-JMI,Thrombinar,Thrombostat,alpha-Thrombin,beta,gamma-Thrombin,beta-Thrombin,gamma-Thrombin,JMI, Thrombin
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

T A Davies, and G J Weil, and E R Simons
January 1988, Annals of the New York Academy of Sciences,
T A Davies, and G J Weil, and E R Simons
December 1994, The American journal of physiology,
T A Davies, and G J Weil, and E R Simons
September 2006, Science's STKE : signal transduction knowledge environment,
T A Davies, and G J Weil, and E R Simons
December 1998, The Journal of biological chemistry,
T A Davies, and G J Weil, and E R Simons
August 1992, The Journal of biological chemistry,
T A Davies, and G J Weil, and E R Simons
September 2020, Cytometry. Part A : the journal of the International Society for Analytical Cytology,
T A Davies, and G J Weil, and E R Simons
September 1991, Journal of immunological methods,
T A Davies, and G J Weil, and E R Simons
December 1993, The Journal of biological chemistry,
Copied contents to your clipboard!