Dependence of micelle size and shape on detergent alkyl chain length and head group. 2013

Ryan C Oliver, and Jan Lipfert, and Daniel A Fox, and Ryan H Lo, and Sebastian Doniach, and Linda Columbus
Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America.

Micelle-forming detergents provide an amphipathic environment that can mimic lipid bilayers and are important tools for solubilizing membrane proteins for functional and structural investigations in vitro. However, the formation of a soluble protein-detergent complex (PDC) currently relies on empirical screening of detergents, and a stable and functional PDC is often not obtained. To provide a foundation for systematic comparisons between the properties of the detergent micelle and the resulting PDC, a comprehensive set of detergents commonly used for membrane protein studies are systematically investigated. Using small-angle X-ray scattering (SAXS), micelle shapes and sizes are determined for phosphocholines with 10, 12, and 14 alkyl carbons, glucosides with 8, 9, and 10 alkyl carbons, maltosides with 8, 10, and 12 alkyl carbons, and lysophosphatidyl glycerols with 14 and 16 alkyl carbons. The SAXS profiles are well described by two-component ellipsoid models, with an electron rich outer shell corresponding to the detergent head groups and a less electron dense hydrophobic core composed of the alkyl chains. The minor axis of the elliptical micelle core from these models is constrained by the length of the alkyl chain, and increases by 1.2-1.5 Å per carbon addition to the alkyl chain. The major elliptical axis also increases with chain length; however, the ellipticity remains approximately constant for each detergent series. In addition, the aggregation number of these detergents increases by ∼16 monomers per micelle for each alkyl carbon added. The data provide a comprehensive view of the determinants of micelle shape and size and provide a baseline for correlating micelle properties with protein-detergent interactions.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008823 Micelles Particles consisting of aggregates of molecules held loosely together by secondary bonds. The surface of micelles are usually comprised of amphiphatic compounds that are oriented in a way that minimizes the energy of interaction between the micelle and its environment. Liquids that contain large numbers of suspended micelles are referred to as EMULSIONS. Micelle
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D010767 Phosphorylcholine Calcium and magnesium salts used therapeutically in hepatobiliary dysfunction. Choline Chloride Dihydrogen Phosphate,Choline Phosphate Chloride,Phosphorylcholine Chloride,Choline Phosphate,Phosphocholine,Chloride, Choline Phosphate,Chloride, Phosphorylcholine,Phosphate Chloride, Choline,Phosphate, Choline
D002244 Carbon A nonmetallic element with atomic symbol C, atomic number 6, and atomic weight [12.0096; 12.0116]. It may occur as several different allotropes including DIAMOND; CHARCOAL; and GRAPHITE; and as SOOT from incompletely burned fuel. Carbon-12,Vitreous Carbon,Carbon 12,Carbon, Vitreous
D003902 Detergents Purifying or cleansing agents, usually salts of long-chain aliphatic bases or acids, that exert cleansing (oil-dissolving) and antimicrobial effects through a surface action that depends on possessing both hydrophilic and hydrophobic properties. Cleansing Agents,Detergent Pods,Laundry Detergent Pods,Laundry Pods,Syndet,Synthetic Detergent,Agent, Cleansing,Agents, Cleansing,Cleansing Agent,Detergent,Detergent Pod,Detergent Pod, Laundry,Detergent Pods, Laundry,Detergent, Synthetic,Detergents, Synthetic,Laundry Detergent Pod,Laundry Pod,Pod, Detergent,Pod, Laundry,Pod, Laundry Detergent,Pods, Detergent,Pods, Laundry,Pods, Laundry Detergent,Synthetic Detergents
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular
D053838 Scattering, Small Angle Scattering of a beam of electromagnetic or acoustic RADIATION, or particles, at small angles by particles or cavities whose dimensions are many times as large as the wavelength of the radiation or the de Broglie wavelength of the scattered particles. Also know as low angle scattering. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Small angle scattering (SAS) techniques, small angle neutron (SANS), X-ray (SAXS), and light (SALS, or just LS) scattering, are used to characterize objects on a nanoscale. Small Angle Scattering,Low Angle Scattering,Scattering, Low Angle,Angle Scattering, Low,Angle Scatterings, Low,Low Angle Scatterings,Scatterings, Low Angle

Related Publications

Ryan C Oliver, and Jan Lipfert, and Daniel A Fox, and Ryan H Lo, and Sebastian Doniach, and Linda Columbus
April 2010, The journal of physical chemistry. B,
Ryan C Oliver, and Jan Lipfert, and Daniel A Fox, and Ryan H Lo, and Sebastian Doniach, and Linda Columbus
February 2002, Journal of colloid and interface science,
Ryan C Oliver, and Jan Lipfert, and Daniel A Fox, and Ryan H Lo, and Sebastian Doniach, and Linda Columbus
August 2001, Journal of pharmaceutical sciences,
Ryan C Oliver, and Jan Lipfert, and Daniel A Fox, and Ryan H Lo, and Sebastian Doniach, and Linda Columbus
August 2004, Analytical biochemistry,
Ryan C Oliver, and Jan Lipfert, and Daniel A Fox, and Ryan H Lo, and Sebastian Doniach, and Linda Columbus
July 1981, Biochemistry,
Ryan C Oliver, and Jan Lipfert, and Daniel A Fox, and Ryan H Lo, and Sebastian Doniach, and Linda Columbus
May 2004, Langmuir : the ACS journal of surfaces and colloids,
Ryan C Oliver, and Jan Lipfert, and Daniel A Fox, and Ryan H Lo, and Sebastian Doniach, and Linda Columbus
December 2016, Chembiochem : a European journal of chemical biology,
Ryan C Oliver, and Jan Lipfert, and Daniel A Fox, and Ryan H Lo, and Sebastian Doniach, and Linda Columbus
October 2005, Biophysical chemistry,
Ryan C Oliver, and Jan Lipfert, and Daniel A Fox, and Ryan H Lo, and Sebastian Doniach, and Linda Columbus
May 2008, Langmuir : the ACS journal of surfaces and colloids,
Ryan C Oliver, and Jan Lipfert, and Daniel A Fox, and Ryan H Lo, and Sebastian Doniach, and Linda Columbus
December 2011, Chemphyschem : a European journal of chemical physics and physical chemistry,
Copied contents to your clipboard!