Intracellular organic matter from cyanobacteria as a precursor for carbonaceous and nitrogenous disinfection byproducts. 2013

Eric C Wert, and Fernando L Rosario-Ortiz
Southern Nevada Water Authority, PO Box 99954, Las Vegas, Nevada 89193-9954, United States. eric.wert@snwa.com

The formation of total organic halogen (TOX), carbonaceous disinfection byproducts (DBPs) (trihalomethanes (THMs) and haloacetic acids (HAAs)), and nitrogenous DBPs (trichloronitromethane (TCNM) or chloropicrin, haloacetonitriles (HANs), and nitrosamines) was examined during the chlorination or chloramination of intracellular organic matter (IOM) extracted from Microcystis aeruginosa, Oscillatoria sp. (OSC), and Lyngbya sp. (LYN). The percentage of unknown TOX (22-38%) during chlorination indicated that the majority of DBPs were identified among THMs, HAAs, TCNM, and HANs. Bromide was readily incorporated into DBPs with speciation shifting slightly from dihalogenated species to trihalogenated species. During formation potential testing with chloramines, nitrosamine yields from IOM were measured for N-nitrosodimethylamine (NDMA, 10-52 ng/mgC), N-nitrosopyrrolidine (NPYR, 14 ng/mgC), N-nitrosopiperidine (NPIP, 3.7-5.5 ng/mgC), and N-nitrosomethylethylamine (NMEA, 2.1-2.6 ng/mgC). When IOM was added to a natural water matrix, the nitrosamine yields were not realized likely due to competition from natural organic matter. Ozonation increased NDMA and NMEA formation and reduced NPYR and NPIP formation during subsequent chloramination. In addition, ozone oxidation of IOM formed detectable concentrations of aldehydes, which may contribute to DBP formation. Finally, bioluminescence-based test results showed that >99% of the IOM extracted from OSC and LYN was biodegradable. Therefore, a biological treatment process could minimize this source of DBP precursor material during drinking water treatment.

UI MeSH Term Description Entries
D009584 Nitrogen An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
D009602 Nitrosamines A class of compounds that contain a -NH2 and a -NO radical. Many members of this group have carcinogenic and mutagenic properties. Nitrosamine
D002244 Carbon A nonmetallic element with atomic symbol C, atomic number 6, and atomic weight [12.0096; 12.0116]. It may occur as several different allotropes including DIAMOND; CHARCOAL; and GRAPHITE; and as SOOT from incompletely burned fuel. Carbon-12,Vitreous Carbon,Carbon 12,Carbon, Vitreous
D002700 Chloramines Inorganic derivatives of ammonia by substitution of one or more hydrogen atoms with chlorine atoms or organic compounds with the general formulas R2NCl and RNCl2 (where R is an organic group). Chloroamines
D004128 Dimethylnitrosamine A nitrosamine derivative with alkylating, carcinogenic, and mutagenic properties. It causes serious liver damage and is a hepatocarcinogen in rodents. Nitrosodimethylamine,N-Nitrosodimethylamine,NDMA Nitrosodimethylamine,N Nitrosodimethylamine,Nitrosodimethylamine, NDMA
D004203 Disinfection Rendering pathogens harmless through the use of heat, antiseptics, antibacterial agents, etc.
D000458 Cyanobacteria A phylum of oxygenic photosynthetic bacteria comprised of unicellular to multicellular bacteria possessing CHLOROPHYLL a and carrying out oxygenic PHOTOSYNTHESIS. Cyanobacteria are the only known organisms capable of fixing both CARBON DIOXIDE (in the presence of light) and NITROGEN. Cell morphology can include nitrogen-fixing heterocysts and/or resting cells called akinetes. Formerly called blue-green algae, cyanobacteria were traditionally treated as ALGAE. Algae, Blue-Green,Blue-Green Bacteria,Cyanophyceae,Algae, Blue Green,Bacteria, Blue Green,Bacteria, Blue-Green,Blue Green Algae,Blue Green Bacteria,Blue-Green Algae
D022882 Trihalomethanes Methanes substituted with three halogen atoms, which may be the same or different. Trihalomethane

Related Publications

Eric C Wert, and Fernando L Rosario-Ortiz
March 2017, Chemosphere,
Eric C Wert, and Fernando L Rosario-Ortiz
October 2012, Environmental science & technology,
Eric C Wert, and Fernando L Rosario-Ortiz
December 2011, Journal of hazardous materials,
Eric C Wert, and Fernando L Rosario-Ortiz
April 2023, Water research,
Copied contents to your clipboard!