Nicotinamide-adenine dinucleotide inhibition of pig kidney alkaline phosphatase. 1975

I Ramasamy, and P J Butterworth

1. The interaction of NAD+, NADH and various nucleotide analogues with pig kidney alkaline phosphatase (orthophosphoric-monoester phosphohydrolase (alkaline optimum) EC 3.1.3.1) has been investigated by kinetic means. Some inhibitors act uncompetitively whereas others markedly increase the slopes of double reciprocal plots suggesting they have some affinity for the free enzyme. 2. The compounds seem to bind to alkaline phosphatase through interactions of their bases with a relatively non-specific region of the enzyme, although it is likely that for those nucleotides having some affinity for the free enzyme there is some attraction between the pyrophosphate backbone and the active site. 3. From studies of the effect of NAD+ and NADH on ATPase activity it was concluded that the substrate inhibition that is characteristic of the ATPase activity of alkaline phosphatase originates from binding of ATP to the site assumed to exist for NAD+ and NADH. The potentiation of NAD+-inhibition of ATPase activity by Mg-2+ is probably a result of the depletion of [ATP-4-] the true substrate. The depletion allows NAD+ to complete more effectively for the active site. 4. Binding of NADH is favoured by protonation of an enzymic group with a pK of approx. 9.0 belonging possibly to a tyrosine residue or a zinc hydrate. 5. A large entropy decrease was found to accompany the binding of NAD+ and NADH to alkaline phosphatase. This may be further evidence of an "induced-fit" mechanism previously suspected because of the synergistic inhibitory effects of adenosine and nicotinamide.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009536 Niacinamide An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and PELLAGRA. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. Nicotinamide,Vitamin B 3,Vitamin PP,3-Pyridinecarboxamide,Enduramide,Nicobion,Nicotinsäureamid Jenapharm,Papulex,Vitamin B3,3 Pyridinecarboxamide,B 3, Vitamin,B3, Vitamin,Jenapharm, Nicotinsäureamid
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000469 Alkaline Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.

Related Publications

I Ramasamy, and P J Butterworth
February 1968, The Journal of biological chemistry,
I Ramasamy, and P J Butterworth
July 1971, The Journal of biological chemistry,
I Ramasamy, and P J Butterworth
March 1968, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
I Ramasamy, and P J Butterworth
November 1993, Archives of biochemistry and biophysics,
I Ramasamy, and P J Butterworth
September 1970, The Journal of biological chemistry,
I Ramasamy, and P J Butterworth
April 1963, Biochemical and biophysical research communications,
I Ramasamy, and P J Butterworth
September 1972, Infection and immunity,
Copied contents to your clipboard!