Liver and kidney injury after administration of hemoglobin cross-linked with bis(3,5-dibromosalicyl) fumarate. 1990

C D Smith, and S T Schuschereba, and J R Hess, and L A McKinney, and D Bunch, and P D Bowman
Division of Pathology, Letterman Army Institute of Research, San Francisco, CA 94129-6800.

Human hemoglobin cross-linked between the alpha chains with bis (3,5-dibromosalicyl) fumarate (DBBF-Hb) was exchange transfused in swine and the histomorphologic changes were evaluated. Following exchange, animals were euthanized and tissues were taken for light and electron microscopy at 7.5 hours and days 1, 4, 7, and 15. Consistent hepatocellular and renal epithelial cell changes were seen. Hepatic injury, evident at 7.5 hours as cellular vacuolization, progressed to necrosis and acute inflammatory cell infiltration by days 1 and 4, was resolving by 7 days and was completely resolved by day 15. Cytochemical stains for iron and hemoglobin revealed positive material in Kupffer cells, endothelial cells, and necrotic hepatocytes. Rabbit anti-human hemoglobin antibody staining revealed immunoreactive material diffusely present at days 1 and 4 and limited to solitary hepatocytes by day 15. Kidney injury began as proximal tubular epithelial vacuolization and intraluminal casts progressing to tubular necrosis by 24 hours, with resolution by day 15. Iron and hemoglobin stains demonstrated these materials in the early lesions. Immunocytochemistries demonstrated human hemoglobin that remained as late as day 15. Electron microscopy revealed degeneration and regeneration of epithelial cells. The renal lesions were consistent with hemoglobinuria. The liver lesion was less well defined but was self limited.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D001802 Blood Substitutes Substances that are used in place of blood, for example, as an alternative to BLOOD TRANSFUSIONS after blood loss to restore BLOOD VOLUME and oxygen-carrying capacity to the blood circulation, or to perfuse isolated organs. Artificial Blood,Artificial Erythrocytes,Artificial Hemoglobin,Blood, Artificial,Erythrocyte Substitutes,Hemoglobin Substitutes,Red Cell Substitutes,Artificial Bloods,Artificial Erythrocyte,Artificial Hemoglobins,Blood Substitute,Bloods, Artificial,Cell Substitute, Red,Cell Substitutes, Red,Erythrocyte Substitute,Erythrocyte, Artificial,Erythrocytes, Artificial,Hemoglobin Substitute,Hemoglobin, Artificial,Hemoglobins, Artificial,Red Cell Substitute,Substitute, Blood,Substitute, Erythrocyte,Substitute, Hemoglobin,Substitute, Red Cell,Substitutes, Blood,Substitutes, Erythrocyte,Substitutes, Hemoglobin,Substitutes, Red Cell
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D005260 Female Females
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001241 Aspirin The prototypical analgesic used in the treatment of mild to moderate pain. It has anti-inflammatory and antipyretic properties and acts as an inhibitor of cyclooxygenase which results in the inhibition of the biosynthesis of prostaglandins. Aspirin also inhibits platelet aggregation and is used in the prevention of arterial and venous thrombosis. (From Martindale, The Extra Pharmacopoeia, 30th ed, p5) Acetylsalicylic Acid,2-(Acetyloxy)benzoic Acid,Acetysal,Acylpyrin,Aloxiprimum,Colfarit,Dispril,Easprin,Ecotrin,Endosprin,Magnecyl,Micristin,Polopirin,Polopiryna,Solprin,Solupsan,Zorprin,Acid, Acetylsalicylic
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog

Related Publications

C D Smith, and S T Schuschereba, and J R Hess, and L A McKinney, and D Bunch, and P D Bowman
October 1979, Biochemistry,
C D Smith, and S T Schuschereba, and J R Hess, and L A McKinney, and D Bunch, and P D Bowman
January 1994, Artificial cells, blood substitutes, and immobilization biotechnology,
C D Smith, and S T Schuschereba, and J R Hess, and L A McKinney, and D Bunch, and P D Bowman
October 1989, The Journal of biological chemistry,
C D Smith, and S T Schuschereba, and J R Hess, and L A McKinney, and D Bunch, and P D Bowman
September 1995, The Journal of laboratory and clinical medicine,
C D Smith, and S T Schuschereba, and J R Hess, and L A McKinney, and D Bunch, and P D Bowman
April 1989, The Journal of biological chemistry,
C D Smith, and S T Schuschereba, and J R Hess, and L A McKinney, and D Bunch, and P D Bowman
January 1994, Artificial cells, blood substitutes, and immobilization biotechnology,
C D Smith, and S T Schuschereba, and J R Hess, and L A McKinney, and D Bunch, and P D Bowman
October 1990, European journal of biochemistry,
C D Smith, and S T Schuschereba, and J R Hess, and L A McKinney, and D Bunch, and P D Bowman
September 1989, Biochemical and biophysical research communications,
C D Smith, and S T Schuschereba, and J R Hess, and L A McKinney, and D Bunch, and P D Bowman
January 1991, Biochemical and biophysical research communications,
C D Smith, and S T Schuschereba, and J R Hess, and L A McKinney, and D Bunch, and P D Bowman
December 1997, Protein science : a publication of the Protein Society,
Copied contents to your clipboard!