Transmission electron microscopy analysis of epithelial basement membrane repair in rabbit corneas with haze. 2013

Andre A M Torricelli, and Vivek Singh, and Vandana Agrawal, and Marcony R Santhiago, and Steven E Wilson
Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA.

OBJECTIVE To assess the ultrastructure of the epithelial basement membrane using transmission electron microscopy (TEM) in rabbit corneas with and without subepithelial stroma opacity (haze). METHODS Two groups of eight rabbits each were included in this study. Photorefractive keratectomy (PRK) was performed using an excimer laser. The first group had -4.5-diopter (-4.5D) PRK and the second group had -9.0D PRK. Contralateral eyes were unwounded controls. Rabbits were sacrificed at 4 weeks after surgery. Immunohistochemical analysis was performed to detect the myofibroblast marker α-smooth muscle actin (SMA). TEM was performed to analyze the ultrastructure of the epithelial basement membrane and stroma. RESULTS At 4 weeks after PRK, α-SMA+ myofibroblasts were present at high density in the subepithelial stroma of rabbit eyes that had -9.0D PRK, along with prominent disorganized extracellular matrix, whereas few myofibroblasts and little disorganized extracellular matrix were noted in eyes that had -4.5D PRK. The epithelial basement membrane was irregular and discontinuous and lacking typical morphology in all corneas at 1 month after -9D PRK compared to corneas at 1 month in the -4.5D PRK group. CONCLUSIONS The epithelial basement membrane acts as a critical modulator of corneal wound healing. Structural and functional defects in the epithelial basement membrane correlate to both stromal myofibroblast development from precursor cells and continued myofibroblast viability, likely through the modulation of epithelial-stromal interactions mediated by cytokines. Prolonged stromal haze in the cornea is associated with abnormal regeneration of the epithelial basement membrane.

UI MeSH Term Description Entries
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D012038 Regeneration The physiological renewal, repair, or replacement of tissue. Endogenous Regeneration,Regeneration, Endogenous,Regenerations
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D003319 Corneal Stroma The lamellated connective tissue constituting the thickest layer of the cornea between the Bowman and Descemet membranes. Corneal Stromas,Stroma, Corneal,Stromas, Corneal
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D005260 Female Females
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001485 Basement Membrane A darkly stained mat-like EXTRACELLULAR MATRIX (ECM) that separates cell layers, such as EPITHELIUM from ENDOTHELIUM or a layer of CONNECTIVE TISSUE. The ECM layer that supports an overlying EPITHELIUM or ENDOTHELIUM is called basal lamina. Basement membrane (BM) can be formed by the fusion of either two adjacent basal laminae or a basal lamina with an adjacent reticular lamina of connective tissue. BM, composed mainly of TYPE IV COLLAGEN; glycoprotein LAMININ; and PROTEOGLYCAN, provides barriers as well as channels between interacting cell layers. Basal Lamina,Basement Lamina,Lamina Densa,Lamina Lucida,Lamina Reticularis,Basement Membranes,Densas, Lamina,Lamina, Basal,Lamina, Basement,Lucida, Lamina,Membrane, Basement,Membranes, Basement,Reticularis, Lamina
D014463 Ultrasonography The visualization of deep structures of the body by recording the reflections or echoes of ultrasonic pulses directed into the tissues. Use of ultrasound for imaging or diagnostic purposes employs frequencies ranging from 1.6 to 10 megahertz. Echography,Echotomography,Echotomography, Computer,Sonography, Medical,Tomography, Ultrasonic,Ultrasonic Diagnosis,Ultrasonic Imaging,Ultrasonographic Imaging,Computer Echotomography,Diagnosis, Ultrasonic,Diagnostic Ultrasound,Ultrasonic Tomography,Ultrasound Imaging,Diagnoses, Ultrasonic,Diagnostic Ultrasounds,Imaging, Ultrasonic,Imaging, Ultrasonographic,Imaging, Ultrasound,Imagings, Ultrasonographic,Imagings, Ultrasound,Medical Sonography,Ultrasonic Diagnoses,Ultrasonographic Imagings,Ultrasound, Diagnostic,Ultrasounds, Diagnostic

Related Publications

Andre A M Torricelli, and Vivek Singh, and Vandana Agrawal, and Marcony R Santhiago, and Steven E Wilson
April 1992, Archives of ophthalmology (Chicago, Ill. : 1960),
Andre A M Torricelli, and Vivek Singh, and Vandana Agrawal, and Marcony R Santhiago, and Steven E Wilson
September 1993, Cornea,
Andre A M Torricelli, and Vivek Singh, and Vandana Agrawal, and Marcony R Santhiago, and Steven E Wilson
January 2019, Computational and mathematical methods in medicine,
Andre A M Torricelli, and Vivek Singh, and Vandana Agrawal, and Marcony R Santhiago, and Steven E Wilson
March 1983, Archives of ophthalmology (Chicago, Ill. : 1960),
Andre A M Torricelli, and Vivek Singh, and Vandana Agrawal, and Marcony R Santhiago, and Steven E Wilson
January 1989, Progress in clinical and biological research,
Andre A M Torricelli, and Vivek Singh, and Vandana Agrawal, and Marcony R Santhiago, and Steven E Wilson
August 2019, Current eye research,
Andre A M Torricelli, and Vivek Singh, and Vandana Agrawal, and Marcony R Santhiago, and Steven E Wilson
July 1978, The American journal of pathology,
Andre A M Torricelli, and Vivek Singh, and Vandana Agrawal, and Marcony R Santhiago, and Steven E Wilson
August 2019, Irish journal of medical science,
Andre A M Torricelli, and Vivek Singh, and Vandana Agrawal, and Marcony R Santhiago, and Steven E Wilson
September 1991, Cornea,
Andre A M Torricelli, and Vivek Singh, and Vandana Agrawal, and Marcony R Santhiago, and Steven E Wilson
July 2013, Investigative ophthalmology & visual science,
Copied contents to your clipboard!