The frequency of aneuploidy among individual chromosomes in 6,821 human sperm chromosome complements. 1990

R H Martin, and A Rademaker
Department of Pediatrics, Faculty of Medicine, University of Calgary, Alberta, Canada.

The human sperm/hamster egg fusion technique has been used to analyse 6,821 human sperm chromosome complements from 98 men to determine if all chromosomes are equally likely to be involved in aneuploid events or if some chromosomes are particularly susceptible to nondisjunction. The frequency of hypohaploidy and hyperhaploidy was compared among different chromosome groups and individual chromosomes. In general, hypohaploid sperm complements were more frequent than hyperhaploid complements. The distribution of chromosome loss in the hypohaploid complements indicated that significantly fewer of the large chromosomes and significantly more of the small chromosomes were lost, suggesting that technical loss predominantly affects small chromosomes. Among the autosomes, the observed frequency of hyperhaploid sperm equalled the expected frequency (assuming an equal frequency of nondisjunction for all chromosomes) for all chromosome groups. Among individual autosomes, only chromosome 9 showed an increased frequency of hyperhaploidy. The sex chromosomes also showed a significant increase in the frequency of hyperhaploidy. These results are consistent with studies of spontaneous abortions and liveborns demonstrating that aneuploidy for the sex chromosomes is caused by paternal meiotic error more commonly than aneuploidy for the autosomes.

UI MeSH Term Description Entries
D007621 Karyotyping Mapping of the KARYOTYPE of a cell. Karyotype Analysis Methods,Analysis Method, Karyotype,Analysis Methods, Karyotype,Karyotype Analysis Method,Karyotypings,Method, Karyotype Analysis,Methods, Karyotype Analysis
D008297 Male Males
D009630 Nondisjunction, Genetic The failure of homologous CHROMOSOMES or CHROMATIDS to segregate during MITOSIS or MEIOSIS with the result that one daughter cell has both of a pair of parental chromosomes or chromatids and the other has none. Genetic Non-Disjunction,Genetic Nondisjunction,Non-Disjunction, Genetic,Genetic Non Disjunction,Genetic Non-Disjunctions,Genetic Nondisjunctions,Non Disjunction, Genetic,Non-Disjunctions, Genetic,Nondisjunctions, Genetic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000013 Congenital Abnormalities Malformations of organs or body parts during development in utero. Birth Defects,Congenital Defects,Deformities,Fetal Anomalies,Fetal Malformations,Abnormalities, Congenital,Defects, Congenital,Abnormality, Congenital,Anomaly, Fetal,Birth Defect,Congenital Abnormality,Congenital Defect,Defect, Birth,Defect, Congenital,Deformity,Fetal Anomaly,Fetal Malformation,Malformation, Fetal
D000782 Aneuploidy The chromosomal constitution of cells which deviate from the normal by the addition or subtraction of CHROMOSOMES, chromosome pairs, or chromosome fragments. In a normally diploid cell (DIPLOIDY) the loss of a chromosome pair is termed nullisomy (symbol: 2N-2), the loss of a single chromosome is MONOSOMY (symbol: 2N-1), the addition of a chromosome pair is tetrasomy (symbol: 2N+2), the addition of a single chromosome is TRISOMY (symbol: 2N+1). Aneuploid,Aneuploid Cell,Aneuploid Cells,Aneuploidies,Aneuploids,Cell, Aneuploid,Cells, Aneuploid
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms
D014314 Trisomy The possession of a third chromosome of any one type in an otherwise diploid cell. Partial Trisomy,Chromosomal Triplication,Chromosomal Triplications,Partial Trisomies,Trisomies,Trisomies, Partial,Trisomy, Partial

Related Publications

R H Martin, and A Rademaker
January 2005, Cytogenetic and genome research,
R H Martin, and A Rademaker
January 1996, Cytogenetics and cell genetics,
R H Martin, and A Rademaker
February 1992, Human genetics,
R H Martin, and A Rademaker
December 1998, Chromosoma,
R H Martin, and A Rademaker
April 1989, American journal of human genetics,
R H Martin, and A Rademaker
April 1988, Human genetics,
R H Martin, and A Rademaker
June 2011, Genetika,
R H Martin, and A Rademaker
January 1996, Cytogenetics and cell genetics,
Copied contents to your clipboard!