Modulation of T-cell mediated immunity by dopamine receptor d5. 2013

Carolina Prado, and Sebastian Bernales, and Rodrigo Pacheco
Fundacion Ciencia y Vida. Avenida Zanartu #1482, Santiago, Chile.

CD4+ T-cells are central players orchestrating antigen-specific immunity and tolerance. Importantly, dendritic cells (DCs) are responsible for priming T-cells and for promoting their differentiation from naïve T-cells into appropriate functional cells. Because of their fundamental roles in controlling immunity, activation and differentiation of DCs and CD4+ T-cells require tight regulatory mechanisms. Several studies have shown that dopamine, not only mediates interactions into the nervous system, but it can also contribute to the modulation of immunity. Here, we review the emerging role of this neurotransmitter as a regulator of DCs and CD4+ T-cells physiology and its consequent involvement, in the regulation of immune response. We specially focus the analysis in the role of dopamine receptor D5 expressed on DCs and CD4+ T-cells in the modulation of immunity. We also discuss how alterations in the dopamine-mediated regulation of immunity could contribute to the onset and development of immune-related disorders.

UI MeSH Term Description Entries
D007111 Immunity, Cellular Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role. Cell-Mediated Immunity,Cellular Immune Response,Cell Mediated Immunity,Cell-Mediated Immunities,Cellular Immune Responses,Cellular Immunities,Cellular Immunity,Immune Response, Cellular,Immune Responses, Cellular,Immunities, Cell-Mediated,Immunities, Cellular,Immunity, Cell-Mediated,Response, Cellular Immune
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D015213 Neuroimmunomodulation The biochemical and electrophysiological interactions between the NERVOUS SYSTEM and IMMUNE SYSTEM. Cholinergic Anti-inflammatory Pathway,Neuro-immune Axis,Neuro-immune Communication,Neuro-immune Interactions,Neuro-immunomodulation,Neuroimmune Axis,Neuroimmune Communication,Neuroimmune Interactions,Neuroimmune Processes,Vagal Anti-inflammatory Pathway,Vagal-immune Interactions,Neuroimmune Mechanisms,Neuroimmune Process,Anti-inflammatory Pathway, Cholinergic,Anti-inflammatory Pathway, Vagal,Cholinergic Anti inflammatory Pathway,Cholinergic Anti-inflammatory Pathways,Communication, Neuro-immune,Communication, Neuroimmune,Interaction, Neuro-immune,Interaction, Neuroimmune,Mechanism, Neuroimmune,Neuro immune Axis,Neuro immune Communication,Neuro immune Interactions,Neuro immunomodulation,Neuro-immune Communications,Neuro-immune Interaction,Neuroimmune Communications,Neuroimmune Interaction,Neuroimmune Mechanism,Process, Neuroimmune,Vagal Anti inflammatory Pathway,Vagal Anti-inflammatory Pathways,Vagal immune Interactions,Vagal-immune Interaction
D050641 Receptors, Dopamine D5 A subtype of dopamine D1 receptors that has higher affinity for DOPAMINE and differentially couples to GTP-BINDING PROTEINS. Dopamine D5 Receptors,Dopamine D1B Receptor,Dopamine D5 Receptor,D1B Receptor, Dopamine,D5 Receptor, Dopamine,D5 Receptors, Dopamine,Receptor, Dopamine D1B,Receptor, Dopamine D5

Related Publications

Carolina Prado, and Sebastian Bernales, and Rodrigo Pacheco
December 1991, Gene,
Carolina Prado, and Sebastian Bernales, and Rodrigo Pacheco
August 2017, Autophagy,
Carolina Prado, and Sebastian Bernales, and Rodrigo Pacheco
January 1994, Zeitschrift fur Naturforschung. C, Journal of biosciences,
Carolina Prado, and Sebastian Bernales, and Rodrigo Pacheco
January 2005, American journal of physiology. Heart and circulatory physiology,
Carolina Prado, and Sebastian Bernales, and Rodrigo Pacheco
May 2011, Traffic (Copenhagen, Denmark),
Carolina Prado, and Sebastian Bernales, and Rodrigo Pacheco
February 2013, Biochemical and biophysical research communications,
Carolina Prado, and Sebastian Bernales, and Rodrigo Pacheco
January 1975, Annals of the New York Academy of Sciences,
Carolina Prado, and Sebastian Bernales, and Rodrigo Pacheco
March 2020, Neuroscience bulletin,
Copied contents to your clipboard!