Phorbol esters induce neurotransmitter release in cholinergic synaptosomes from Torpedo electric organ. 1990

X Guitart, and J Marsal, and C Solsona
Departament de Biologia Cellular i Anatomía Patològica, Facultat de Medicina, Universitat de Barcelona, Spain.

The effect of phorbol esters and so the involvement of Ca2+/phospholipid-dependent protein kinase (protein kinase C;PKC) in the release of acetylcholine (ACh) was studied using Torpedo electric organ synaptosomes. 12-O-Tetradecanoylphorbol 13-acetate (TPA), a known activator of PKC, induced neurotransmitter release in a concentration-dependent manner and increased the potassium-evoked release of ACh. The effect of TPA was shown to be independent of the extrasynaptosomal calcium concentration. TPA-induced ACh release was reversed by H-7, an inhibitor of PKC activity. This drug showed no effect on potassium-evoked ACh release. Botulinum toxin, a strong blocker of potassium-induced ACh release in that synaptosomal preparation, showed no inhibitory effect on the TPA-induced ACh release. Our results suggest that activation of PKC potentiates the release of an ACh pool that is not releasable by potassium depolarization, independently of the extracellular calcium concentration.

UI MeSH Term Description Entries
D007546 Isoquinolines A group of compounds with the heterocyclic ring structure of benzo(c)pyridine. The ring structure is characteristic of the group of opium alkaloids such as papaverine. (From Stedman, 25th ed)
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010703 Phorbol Esters Tumor-promoting compounds obtained from CROTON OIL (Croton tiglium). Some of these are used in cell biological experiments as activators of protein kinase C. Phorbol Diester,Phorbol Ester,Phorbol Diesters,Diester, Phorbol,Diesters, Phorbol,Ester, Phorbol,Esters, Phorbol
D010879 Piperazines Compounds that are derived from PIPERAZINE.
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D001905 Botulinum Toxins Toxic proteins produced from the species CLOSTRIDIUM BOTULINUM. The toxins are synthesized as a single peptide chain which is processed into a mature protein consisting of a heavy chain and light chain joined via a disulfide bond. The botulinum toxin light chain is a zinc-dependent protease which is released from the heavy chain upon ENDOCYTOSIS into PRESYNAPTIC NERVE ENDINGS. Once inside the cell the botulinum toxin light chain cleaves specific SNARE proteins which are essential for secretion of ACETYLCHOLINE by SYNAPTIC VESICLES. This inhibition of acetylcholine release results in muscular PARALYSIS. Botulin,Botulinum Neurotoxin,Botulinum Neurotoxins,Clostridium botulinum Toxins,Botulinum Toxin,Neurotoxin, Botulinum,Neurotoxins, Botulinum,Toxin, Botulinum,Toxins, Botulinum,Toxins, Clostridium botulinum
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine

Related Publications

X Guitart, and J Marsal, and C Solsona
November 1976, Biochemical and biophysical research communications,
X Guitart, and J Marsal, and C Solsona
October 1978, Journal of neurochemistry,
X Guitart, and J Marsal, and C Solsona
January 1979, Progress in brain research,
X Guitart, and J Marsal, and C Solsona
September 1986, Journal of neurochemistry,
X Guitart, and J Marsal, and C Solsona
August 1991, The Journal of physiology,
X Guitart, and J Marsal, and C Solsona
May 1992, The Journal of physiology,
X Guitart, and J Marsal, and C Solsona
November 1987, Neuroscience letters,
X Guitart, and J Marsal, and C Solsona
January 1978, Journal of neurochemistry,
Copied contents to your clipboard!