Inhibition of carbonic anhydrase prevents the Na(+)/H(+) exchanger 1-dependent slow force response to rat myocardial stretch. 2013

Lorena A Vargas, and Romina G Díaz, and Erik R Swenson, and Néstor G Pérez, and Bernardo V Álvarez
Centro de Investigaciones Cardiovasculares, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.

Myocardial stretch is an established signal that leads to hypertrophy. Myocardial stretch induces a first immediate force increase followed by a slow force response (SFR), which is a consequence of an increased Ca(2+) transient that follows the NHE1 Na(+)/H(+) exchanger activation. Carbonic anhydrase II (CAII) binds to the extreme COOH terminus of NHE1 and regulates its transport activity. We aimed to test the role of CAII bound to NHE1 in the SFR. The SFR and changes in intracellular pH (pHi) were evaluated in rat papillary muscle bathed with CO2/HCO3(-) buffer and stretched from 92% to 98% of the muscle maximal force development length for 10 min in the presence of the CA inhibitor 6-ethoxzolamide (ETZ, 100 μM). SFR control was 120 ± 3% (n = 8) of the rapid initial phase and was fully blocked by ETZ (99 ± 4%, n = 6). The SFR corresponded to a maximal increase in pHi of 0.18 ± 0.02 pH units (n = 4), and pHi changes were blocked by ETZ (0.04 ± 0.04, n = 6), as monitored by epifluorescence. NHE1/CAII physical association was examined in the SFR by coimmunoprecipitation, using muscle lysates. CAII immunoprecipitated with an anti-NHE1 antibody and the CAII immunoprecipitated protein levels increased 58 ± 9% (n = 6) upon stretch of muscles, assessed by immunoblots. The p90(RSK) kinase inhibitor SL0101-1 (10 μM) blocked the SFR of heart muscles after stretch 102 ± 2% (n = 4) and reduced the binding of CAII to NHE1, suggesting that the stretch-induced phosphorylation of NHE1 increases its binding to CAII. CAII/NHE1 interaction constitutes a component of the SFR to heart muscle stretch, which potentiates NHE1-mediated H(+) transport in the myocardium.

UI MeSH Term Description Entries
D008163 Luminescent Measurements Techniques used for determining the values of photometric parameters of light resulting from LUMINESCENCE. Bioluminescence Measurements,Bioluminescent Assays,Bioluminescent Measurements,Chemiluminescence Measurements,Chemiluminescent Assays,Chemiluminescent Measurements,Chemoluminescence Measurements,Luminescence Measurements,Luminescent Assays,Luminescent Techniques,Phosphorescence Measurements,Phosphorescent Assays,Phosphorescent Measurements,Assay, Bioluminescent,Assay, Chemiluminescent,Assay, Luminescent,Assay, Phosphorescent,Assays, Bioluminescent,Assays, Chemiluminescent,Assays, Luminescent,Assays, Phosphorescent,Bioluminescence Measurement,Bioluminescent Assay,Bioluminescent Measurement,Chemiluminescence Measurement,Chemiluminescent Assay,Chemiluminescent Measurement,Chemoluminescence Measurement,Luminescence Measurement,Luminescent Assay,Luminescent Measurement,Luminescent Technique,Measurement, Bioluminescence,Measurement, Bioluminescent,Measurement, Chemiluminescence,Measurement, Chemiluminescent,Measurement, Chemoluminescence,Measurement, Luminescence,Measurement, Luminescent,Measurement, Phosphorescence,Measurement, Phosphorescent,Measurements, Bioluminescence,Measurements, Bioluminescent,Measurements, Chemiluminescence,Measurements, Chemiluminescent,Measurements, Chemoluminescence,Measurements, Luminescence,Measurements, Luminescent,Measurements, Phosphorescence,Measurements, Phosphorescent,Phosphorescence Measurement,Phosphorescent Assay,Phosphorescent Measurement,Technique, Luminescent,Techniques, Luminescent
D008297 Male Males
D009470 Muscle Spindles Skeletal muscle structures that function as the MECHANORECEPTORS responsible for the stretch or myotactic reflex (REFLEX, STRETCH). They are composed of a bundle of encapsulated SKELETAL MUSCLE FIBERS, i.e., the intrafusal fibers (nuclear bag 1 fibers, nuclear bag 2 fibers, and nuclear chain fibers) innervated by SENSORY NEURONS. Muscle Stretch Receptors,Neuromuscular Spindles,Receptors, Stretch, Muscle,Stretch Receptors, Muscle,Muscle Spindle,Muscle Stretch Receptor,Neuromuscular Spindle,Receptor, Muscle Stretch,Receptors, Muscle Stretch,Spindle, Muscle,Spindle, Neuromuscular,Spindles, Muscle,Spindles, Neuromuscular,Stretch Receptor, Muscle
D010210 Papillary Muscles Conical muscular projections from the walls of the cardiac ventricles, attached to the cusps of the atrioventricular valves by the chordae tendineae. Muscle, Papillary,Muscles, Papillary,Papillary Muscle
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002257 Carbonic Anhydrase Inhibitors A class of compounds that reduces the secretion of H+ ions by the proximal kidney tubule through inhibition of CARBONIC ANHYDRASES. Carbonate Dehydratase Inhibitor,Carbonate Dehydratase Inhibitors,Carbonic Anhydrase Inhibitor,Carboxyanhydrase Inhibitor,Carboxyanhydrase Inhibitors,Anhydrase Inhibitor, Carbonic,Dehydratase Inhibitor, Carbonate,Inhibitor, Carbonate Dehydratase,Inhibitor, Carbonic Anhydrase,Inhibitor, Carboxyanhydrase,Inhibitors, Carbonate Dehydratase,Inhibitors, Carbonic Anhydrase,Inhibitors, Carboxyanhydrase
D005016 Ethoxzolamide A carbonic anhydrase inhibitor used as diuretic and in glaucoma. It may cause hypokalemia. Ethoxyzolamide,Ethamide,Ethoxazolamide
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000074082 Sodium-Hydrogen Exchanger 1 A sodium-hydrogen antiporter expressed by many cell types, especially on the basolateral surfaces of EPITHELIAL CELLS. It functions through an inward sodium ion chemical gradient to eliminate acids (protons) generated by metabolism and regulate intracellular pH. It is highly sensitive to AMILORIDE. Na(+)-H(+) Exchanger 1,SLC9A1 Protein,Solute Carrier Family 9 Member 1,Sodium Hydrogen Exchanger 1

Related Publications

Lorena A Vargas, and Romina G Díaz, and Erik R Swenson, and Néstor G Pérez, and Bernardo V Álvarez
October 1999, Circulation research,
Lorena A Vargas, and Romina G Díaz, and Erik R Swenson, and Néstor G Pérez, and Bernardo V Álvarez
November 2019, Biomolecules,
Lorena A Vargas, and Romina G Díaz, and Erik R Swenson, and Néstor G Pérez, and Bernardo V Álvarez
September 2002, The Journal of biological chemistry,
Lorena A Vargas, and Romina G Díaz, and Erik R Swenson, and Néstor G Pérez, and Bernardo V Álvarez
March 2003, Cardiovascular research,
Lorena A Vargas, and Romina G Díaz, and Erik R Swenson, and Néstor G Pérez, and Bernardo V Álvarez
September 2011, Journal of applied physiology (Bethesda, Md. : 1985),
Lorena A Vargas, and Romina G Díaz, and Erik R Swenson, and Néstor G Pérez, and Bernardo V Álvarez
November 2003, Circulation research,
Lorena A Vargas, and Romina G Díaz, and Erik R Swenson, and Néstor G Pérez, and Bernardo V Álvarez
April 2005, The Canadian journal of cardiology,
Lorena A Vargas, and Romina G Díaz, and Erik R Swenson, and Néstor G Pérez, and Bernardo V Álvarez
March 2001, Circulation research,
Lorena A Vargas, and Romina G Díaz, and Erik R Swenson, and Néstor G Pérez, and Bernardo V Álvarez
August 1976, The American journal of physiology,
Lorena A Vargas, and Romina G Díaz, and Erik R Swenson, and Néstor G Pérez, and Bernardo V Álvarez
August 2000, Gastroenterology,
Copied contents to your clipboard!