Molecular characterization and tissue distribution of feline retinol-binding protein 4. 2013

Noriyasu Sasaki, and Miwa Ishibashi, and Satoshi Soeta
Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan.

Retinol-binding protein 4 (RBP4) is a specific transporter of retinol and was recently identified as an adipokine potentially involved in type 2 diabetes in humans and rodents. However, the function and structure of feline RBP4 have not been reported. In this study, we describe the molecular cloning and expression analysis of feline RBP4. The complete feline RBP4 cDNA encodes a precursor protein comprising an 18 amino acid signal peptide and a 183 amino acid mature protein. Feline RBP4 was mapped to chromosome D2. Mature feline RBP4 is 83-94% homologous to the RBPs of humans, cows and rodents. RT-PCR analysis revealed feline RBP4 expression in liver and adipose tissues.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012177 Retinol-Binding Proteins Proteins which bind with RETINOL. The retinol-binding protein found in plasma has an alpha-1 mobility on electrophoresis and a molecular weight of about 21 kDa. The retinol-protein complex (MW Retinoid Binding Protein,Retinol Binding Protein,Retinoid Binding Protein, F-Type,Retinoid Binding Proteins,Retinol Binding Proteins,Binding Protein, Retinoid,Binding Protein, Retinol,Binding Proteins, Retinoid,Binding Proteins, Retinol,Protein, Retinoid Binding,Protein, Retinol Binding,Retinoid Binding Protein, F Type
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated

Related Publications

Noriyasu Sasaki, and Miwa Ishibashi, and Satoshi Soeta
January 1995, The Biochemical journal,
Noriyasu Sasaki, and Miwa Ishibashi, and Satoshi Soeta
January 1990, Methods in enzymology,
Noriyasu Sasaki, and Miwa Ishibashi, and Satoshi Soeta
March 2009, The Journal of biological chemistry,
Noriyasu Sasaki, and Miwa Ishibashi, and Satoshi Soeta
November 1984, The Journal of biological chemistry,
Noriyasu Sasaki, and Miwa Ishibashi, and Satoshi Soeta
January 1988, Japanese journal of ophthalmology,
Noriyasu Sasaki, and Miwa Ishibashi, and Satoshi Soeta
September 2006, The New England journal of medicine,
Noriyasu Sasaki, and Miwa Ishibashi, and Satoshi Soeta
September 2006, The New England journal of medicine,
Noriyasu Sasaki, and Miwa Ishibashi, and Satoshi Soeta
September 2006, The New England journal of medicine,
Noriyasu Sasaki, and Miwa Ishibashi, and Satoshi Soeta
January 1974, Vitamins and hormones,
Noriyasu Sasaki, and Miwa Ishibashi, and Satoshi Soeta
September 2022, Circulation research,
Copied contents to your clipboard!