Cell transplantation therapy for diabetes mellitus: endocrine pancreas and adipocyte. 2013

Junji Fujikura, and Kiminori Hosoda, and Kazuwa Nakao
Division of Endocrinology and Metabolism, Kyoto University Hospital, Kyoto 606-8507, Japan. j-fuji@sannet.ne.jp

Experimental transplantation of endocrine tissues has led to significant advances in our understanding of endocrinology and metabolism. Endocrine cell transplantation therapy is expected to be applied to the treatment of metabolic endocriopathies. Restoration of functional pancreatic beta-cell mass or of functional adipose mass are reasonable treatment approaches for patients with diabetes or lipodystrophy, respectively. Human induced pluripotent stem (iPS) cell research is having a great impact on life sciences. Doctors Takahashi and Yamanaka discovered that the forced expression of a set of genes can convert mouse and human somatic cells into a pluripotent state [1, 2]. These iPS cells can differentiate into a variety of cell types. Therefore, iPS cells from patients may be a potential cell source for autologous cell replacement therapy. This review briefly summarizes the current knowledge about transplantation therapy for diabetes mellitus, the development of the endocrine pancreas and adipocytes, and endocrine-metabolic disease-specific iPS cells.

UI MeSH Term Description Entries
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D003920 Diabetes Mellitus A heterogeneous group of disorders characterized by HYPERGLYCEMIA and GLUCOSE INTOLERANCE.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016381 Islets of Langerhans Transplantation The transference of pancreatic islets within an individual, between individuals of the same species, or between individuals of different species. Grafting, Islets of Langerhans,Pancreatic Islets Transplantation,Transplantation, Islets of Langerhans,Transplantation, Pancreatic Islets,Islands of Langerhans Transplantation,Islands of Pancreas Transplantation,Islet Transplantation,Transplantation, Islands of Langerhans,Transplantation, Islands of Pancreas,Transplantation, Islet,Islet Transplantations,Islets Transplantation, Pancreatic,Transplantations, Islet
D017667 Adipocytes Cells in the body that store FATS, usually in the form of TRIGLYCERIDES. WHITE ADIPOCYTES are the predominant type and found mostly in the abdominal cavity and subcutaneous tissue. BROWN ADIPOCYTES are thermogenic cells that can be found in newborns of some species and hibernating mammals. Fat Cells,Lipocytes,Adipocyte,Cell, Fat,Cells, Fat,Fat Cell,Lipocyte
D050417 Insulin-Secreting Cells A type of pancreatic cell representing about 50-80% of the islet cells. Beta cells secrete INSULIN. Pancreatic beta Cells,beta Cells, Pancreatic,Pancreatic B Cells,B Cell, Pancreatic,B Cells, Pancreatic,Cell, Insulin-Secreting,Cells, Insulin-Secreting,Insulin Secreting Cells,Insulin-Secreting Cell,Pancreatic B Cell,Pancreatic beta Cell,beta Cell, Pancreatic
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D057026 Induced Pluripotent Stem Cells Cells from adult organisms that have been reprogrammed into a pluripotential state similar to that of EMBRYONIC STEM CELLS. Human Induced Pluripotent Stem Cell,IPS Cell,IPS Cells,Induced Pluripotent Stem Cell,Fibroblast-Derived IPS Cells,Fibroblast-Derived Induced Pluripotent Stem Cells,Human Induced Pluripotent Stem Cells,hiPSC,Cell, Fibroblast-Derived IPS,Cell, IPS,Cells, Fibroblast-Derived IPS,Cells, IPS,Fibroblast Derived IPS Cells,Fibroblast Derived Induced Pluripotent Stem Cells,Fibroblast-Derived IPS Cell,IPS Cell, Fibroblast-Derived,IPS Cells, Fibroblast-Derived

Related Publications

Junji Fujikura, and Kiminori Hosoda, and Kazuwa Nakao
January 1992, Annual review of medicine,
Junji Fujikura, and Kiminori Hosoda, and Kazuwa Nakao
May 2006, Der Internist,
Junji Fujikura, and Kiminori Hosoda, and Kazuwa Nakao
October 1987, Deutsche medizinische Wochenschrift (1946),
Junji Fujikura, and Kiminori Hosoda, and Kazuwa Nakao
January 1995, Annual review of medicine,
Junji Fujikura, and Kiminori Hosoda, and Kazuwa Nakao
March 1996, American journal of kidney diseases : the official journal of the National Kidney Foundation,
Junji Fujikura, and Kiminori Hosoda, and Kazuwa Nakao
January 1978, Acta medica Austriaca,
Junji Fujikura, and Kiminori Hosoda, and Kazuwa Nakao
March 2011, Diabetes technology & therapeutics,
Junji Fujikura, and Kiminori Hosoda, and Kazuwa Nakao
August 1991, Nihon Naika Gakkai zasshi. The Journal of the Japanese Society of Internal Medicine,
Junji Fujikura, and Kiminori Hosoda, and Kazuwa Nakao
March 1976, Orvosi hetilap,
Junji Fujikura, and Kiminori Hosoda, and Kazuwa Nakao
January 1994, Nordisk medicin,
Copied contents to your clipboard!