Light and electron microscopic morphology of the temporomandibular joint in growing and mature crab-eating monkeys (Macaca fascicularis): the condylar articular layer. 1990

H U Luder, and H E Schroeder
Department of Oral Structural Biology, University of Zurich, Switzerland.

In an attempt to establish maturational alterations in the morphology of the articular tissue layer, mandibular condyles of four immature and four mature male monkeys (Macaca fascicularis) were studied using light microscopy as well as scanning and transmission electron microscopy. Specimens were fixed in situ by perfusion in the presence of ruthenium red to stabilize proteoglycans. Preparations intended for observation in the scanning electron microscope were first dehydrated and sputtered for the examination of articular surfaces, and afterwards treated with trypsin to expose the spatial arrangement of collagen fibrils. Gross anatomical relations between joint components indicated that the anterior and central, but not the posterior region of the condylar articular surface can be subject to compressional load. Load-bearing and non-load-bearing regions differed with respect to the morphology of the articular layer. Load-bearing surfaces were covered by a prominent articular surface lamina similar to that observed on articular cartilage. This lamina seemed to constitute an integral part of the articular layer, distinct from the lining of synovial fluid, and to be composed largely of proteoglycans. It was unaffected by maturation. The subjacent, load-bearing articular layer differed markedly in structure, both from articular cartilage, and between immature and mature animals. Articular cells of immature animals were classified as fibroblastlike, but unlike typical fibroblasts, were surrounded by a thin, often incomplete halo of fibril-free pericellular matrix, presumably consisting of proteoglycans. In mature animals, articular cells closely resembled chondrocytes, but exhibited prominent nuclear fibrous laminae, which usually are found only in fibroblasts. Thus, the load-bearing part of the articular layer seems to undergo a maturation-dependent metaplastic conversion, from a dense connective tissue with some features of fibrocartilage, to a fibrocartilage-like tissue containing chondrocyte-like cells with some features of fibroblasts. This conversion might reflect an adaptation to a maturation-associated increase in articular stress.

UI MeSH Term Description Entries
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002356 Cartilage A non-vascular form of connective tissue composed of CHONDROCYTES embedded in a matrix that includes CHONDROITIN SULFATE and various types of FIBRILLAR COLLAGEN. There are three major types: HYALINE CARTILAGE; FIBROCARTILAGE; and ELASTIC CARTILAGE. Cartilages
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013704 Temporomandibular Joint An articulation between the condyle of the mandible and the articular tubercle of the temporal bone. TMJ,Joint, Temporomandibular,Joints, Temporomandibular,Temporomandibular Joints

Related Publications

H U Luder, and H E Schroeder
December 1986, The Southeast Asian journal of tropical medicine and public health,
H U Luder, and H E Schroeder
January 1985, Shoni shikagaku zasshi. The Japanese journal of pedodontics,
H U Luder, and H E Schroeder
March 1994, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons,
H U Luder, and H E Schroeder
January 1971, Folia primatologica; international journal of primatology,
H U Luder, and H E Schroeder
January 1993, American journal of primatology,
H U Luder, and H E Schroeder
October 1985, Okajimas folia anatomica Japonica,
H U Luder, and H E Schroeder
May 1991, Molecular biology and evolution,
H U Luder, and H E Schroeder
April 1973, Journal of reproduction and fertility,
H U Luder, and H E Schroeder
January 1974, Folia primatologica; international journal of primatology,
Copied contents to your clipboard!