Broad protection against influenza infection by vectored immunoprophylaxis in mice. 2013

Alejandro B Balazs, and Jesse D Bloom, and Christin M Hong, and Dinesh S Rao, and David Baltimore
Division of Biology, California Institute of Technology, Pasadena, California, USA.

Neutralizing antibodies that target epitopes conserved among many strains of influenza virus have been recently isolated from humans. Here we demonstrate that adeno-associated viruses (AAV) encoding two such broadly neutralizing antibodies are protective against diverse influenza strains. Serum from mice that received a single intramuscular AAV injection efficiently neutralized all H1, H2 and H5 influenza strains tested. After infection with diverse strains of H1N1 influenza, treated mice showed minimal weight loss and lung inflammation. Protection lasted for at least 11 months after AAV injection. Notably, even immunodeficient and older mice were protected by this method, suggesting that expression of a monoclonal antibody alone is sufficient to protect mice from illness. If translated to humans, this prophylactic approach may be uniquely capable of protecting immunocompromised or elderly patient populations not reliably protected by existing vaccines.

UI MeSH Term Description Entries
D007114 Immunization Deliberate stimulation of the host's immune response. ACTIVE IMMUNIZATION involves administration of ANTIGENS or IMMUNOLOGIC ADJUVANTS. PASSIVE IMMUNIZATION involves administration of IMMUNE SERA or LYMPHOCYTES or their extracts (e.g., transfer factor, immune RNA) or transplantation of immunocompetent cell producing tissue (thymus or bone marrow). Immunologic Stimulation,Immunostimulation,Sensitization, Immunologic,Variolation,Immunologic Sensitization,Immunological Stimulation,Sensitization, Immunological,Stimulation, Immunologic,Immunizations,Immunological Sensitization,Immunological Sensitizations,Immunological Stimulations,Sensitizations, Immunological,Stimulation, Immunological,Stimulations, Immunological,Variolations
D007251 Influenza, Human An acute viral infection in humans involving the respiratory tract. It is marked by inflammation of the NASAL MUCOSA; the PHARYNX; and conjunctiva, and by headache and severe, often generalized, myalgia. Grippe,Human Flu,Human Influenza,Influenza in Humans,Influenza,Flu, Human,Human Influenzas,Influenza in Human,Influenzas,Influenzas, Human
D007252 Influenza Vaccines Vaccines used to prevent infection by viruses in the family ORTHOMYXOVIRIDAE. It includes both killed and attenuated vaccines. The composition of the vaccines is changed each year in response to antigenic shifts and changes in prevalence of influenza virus strains. The flu vaccines may be mono- or multi-valent, which contains one or more ALPHAINFLUENZAVIRUS and BETAINFLUENZAVIRUS strains. Flu Vaccine,Influenzavirus Vaccine,Monovalent Influenza Vaccine,Universal Flu Vaccine,Universal Influenza Vaccine,Flu Vaccines,High-Dose Trivalent Influenza Vaccine,Influenza Vaccine,Influenza Virus Vaccine,Influenza Virus Vaccines,Influenzavirus Vaccines,Intranasal Live-Attenuated Influenza Vaccine,LAIV Vaccine,Monovalent Influenza Vaccines,Quadrivalent Influenza Vaccine,Trivalent Influenza Vaccine,Trivalent Live Attenuated Influenza Vaccine,Universal Flu Vaccines,Universal Influenza Vaccines,Flu Vaccine, Universal,High Dose Trivalent Influenza Vaccine,Influenza Vaccine, Monovalent,Influenza Vaccine, Quadrivalent,Influenza Vaccine, Trivalent,Influenza Vaccine, Universal,Intranasal Live Attenuated Influenza Vaccine,Vaccine, Flu,Vaccine, Influenza,Vaccine, Influenza Virus,Vaccine, Influenzavirus,Vaccine, LAIV,Vaccine, Monovalent Influenza,Vaccine, Quadrivalent Influenza,Vaccine, Trivalent Influenza,Virus Vaccine, Influenza
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000229 Dependovirus A genus of the family PARVOVIRIDAE, subfamily PARVOVIRINAE, which are dependent on a coinfection with helper adenoviruses or herpesviruses for their efficient replication. The type species is Adeno-associated virus 2. Adeno-Associated Viruses,Dependoparvovirus,Adeno-Associated Virus,Virus, Adeno-Associated,Viruses, Adeno-Associated,Adeno Associated Virus,Adeno Associated Viruses,Dependoparvoviruses,Dependoviruses,Virus, Adeno Associated,Viruses, Adeno Associated
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000939 Epitopes Sites on an antigen that interact with specific antibodies. Antigenic Determinant,Antigenic Determinants,Antigenic Specificity,Epitope,Determinant, Antigenic,Determinants, Antigenic,Specificity, Antigenic
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D053118 Influenza A Virus, H1N1 Subtype A subtype of INFLUENZA A VIRUS with the surface proteins hemagglutinin 1 and neuraminidase 1. The H1N1 subtype was responsible for the Spanish flu pandemic of 1918 and 2009 H1N1 pandemic. H1N1 Influenza Virus,H1N1 Virus,H1N1 subtype,H1N1v Viruses,Influenza A (H1N1)pdm09,Influenza A (H1N1)pdm09 Virus,Influenza A H1N1, Variant Virus,Swine-Origin Influenza A H1N1 Virus,H1N1 Influenza Viruses,H1N1 Viruses,H1N1 subtypes,H1N1v Virus,Influenza Virus, H1N1,Swine Origin Influenza A H1N1 Virus,Virus, H1N1,Virus, H1N1 Influenza,Virus, H1N1v,subtype, H1N1

Related Publications

Alejandro B Balazs, and Jesse D Bloom, and Christin M Hong, and Dinesh S Rao, and David Baltimore
November 2011, Nature,
Alejandro B Balazs, and Jesse D Bloom, and Christin M Hong, and Dinesh S Rao, and David Baltimore
February 2023, Gene therapy,
Alejandro B Balazs, and Jesse D Bloom, and Christin M Hong, and Dinesh S Rao, and David Baltimore
September 2014, Journal of virology,
Alejandro B Balazs, and Jesse D Bloom, and Christin M Hong, and Dinesh S Rao, and David Baltimore
June 2022, Vaccines,
Alejandro B Balazs, and Jesse D Bloom, and Christin M Hong, and Dinesh S Rao, and David Baltimore
January 2014, Influenza research and treatment,
Alejandro B Balazs, and Jesse D Bloom, and Christin M Hong, and Dinesh S Rao, and David Baltimore
January 2016, PloS one,
Alejandro B Balazs, and Jesse D Bloom, and Christin M Hong, and Dinesh S Rao, and David Baltimore
May 2024, PNAS nexus,
Alejandro B Balazs, and Jesse D Bloom, and Christin M Hong, and Dinesh S Rao, and David Baltimore
June 2022, Viruses,
Alejandro B Balazs, and Jesse D Bloom, and Christin M Hong, and Dinesh S Rao, and David Baltimore
May 2002, International immunopharmacology,
Alejandro B Balazs, and Jesse D Bloom, and Christin M Hong, and Dinesh S Rao, and David Baltimore
February 1994, Immunology,
Copied contents to your clipboard!