Respiratory function during anesthesia: effects on gas exchange. 2012

Göran Hedenstierna, and Hans Ulrich Rothen
Department of Medical Sciences, Clinical Physiology, Uppsala University Hospital, Uppsala, Sweden. goran.hedenstierna@akademiska.se

Anaesthesia causes a respiratory impairment, whether the patient is breathing spontaneously or is ventilated mechanically. This impairment impedes the matching of alveolar ventilation and perfusion and thus the oxygenation of arterial blood. A triggering factor is loss of muscle tone that causes a fall in the resting lung volume, functional residual capacity. This fall promotes airway closure and gas adsorption, leading eventually to alveolar collapse, that is, atelectasis. The higher the oxygen concentration, the faster will the gas be adsorbed and the aleveoli collapse. Preoxygenation is a major cause of atelectasis and continuing use of high oxygen concentration maintains or increases the lung collapse, that typically is 10% or more of the lung tissue. It can exceed 25% to 40%. Perfusion of the atelectasis causes shunt and cyclic airway closure causes regions with low ventilation/perfusion ratios, that add to impaired oxygenation. Ventilation with positive end-expiratory pressure reduces the atelectasis but oxygenation need not improve, because of shift of blood flow down the lung to any remaining atelectatic tissue. Inflation of the lung to an airway pressure of 40 cmH2O recruits almost all collapsed lung and the lung remains open if ventilation is with moderate oxygen concentration (< 40%) but recollapses within a few minutes if ventilation is with 100% oxygen. Severe obesity increases the lung collapse and obstructive lung disease and one-lung anesthesia increase the mismatch of ventilation and perfusion. CO2 pneumoperitoneum increases atelectasis formation but not shunt, likely explained by enhanced hypoxic pulmonary vasoconstriction by CO2. Atelectasis may persist in the postoperative period and contribute to pneumonia.

UI MeSH Term Description Entries
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011652 Pulmonary Circulation The circulation of the BLOOD through the LUNGS. Pulmonary Blood Flow,Respiratory Circulation,Circulation, Pulmonary,Circulation, Respiratory,Blood Flow, Pulmonary,Flow, Pulmonary Blood,Pulmonary Blood Flows
D011659 Pulmonary Gas Exchange The exchange of OXYGEN and CARBON DIOXIDE between alveolar air and pulmonary capillary blood that occurs across the BLOOD-AIR BARRIER. Exchange, Pulmonary Gas,Gas Exchange, Pulmonary
D012121 Respiration, Artificial Any method of artificial breathing that employs mechanical or non-mechanical means to force the air into and out of the lungs. Artificial respiration or ventilation is used in individuals who have stopped breathing or have RESPIRATORY INSUFFICIENCY to increase their intake of oxygen (O2) and excretion of carbon dioxide (CO2). Ventilation, Mechanical,Mechanical Ventilation,Artificial Respiration,Artificial Respirations,Mechanical Ventilations,Respirations, Artificial,Ventilations, Mechanical
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000768 Anesthesia, General Procedure in which patients are induced into an unconscious state through use of various medications so that they do not feel pain during surgery. Anesthesias, General,General Anesthesia,General Anesthesias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001261 Pulmonary Atelectasis Absence of air in the entire or part of a lung, such as an incompletely inflated neonate lung or a collapsed adult lung. Pulmonary atelectasis can be caused by airway obstruction, lung compression, fibrotic contraction, or other factors. Atelectasis, Congestive,Lung Collapse,Atelectasis,Compression Atelectasis,Compression Pulmonary Atelectasis,Congestive Atelectasis,Congestive Pulmonary Atelectasis,Contraction Pulmonary Atelectasis,Postoperative Pulmonary Atelectasis,Resorption Atelectasis,Resorption Pulmonary Atelectasis,Atelectases,Atelectases, Compression,Atelectases, Compression Pulmonary,Atelectases, Congestive,Atelectases, Congestive Pulmonary,Atelectases, Contraction Pulmonary,Atelectases, Postoperative Pulmonary,Atelectases, Pulmonary,Atelectases, Resorption,Atelectases, Resorption Pulmonary,Atelectasis, Compression,Atelectasis, Compression Pulmonary,Atelectasis, Congestive Pulmonary,Atelectasis, Contraction Pulmonary,Atelectasis, Postoperative Pulmonary,Atelectasis, Pulmonary,Atelectasis, Resorption,Atelectasis, Resorption Pulmonary,Collapse, Lung,Compression Atelectases,Compression Pulmonary Atelectases,Congestive Atelectases,Congestive Pulmonary Atelectases,Contraction Pulmonary Atelectases,Postoperative Pulmonary Atelectases,Pulmonary Atelectases,Pulmonary Atelectases, Compression,Pulmonary Atelectases, Congestive,Pulmonary Atelectases, Contraction,Pulmonary Atelectases, Postoperative,Pulmonary Atelectases, Resorption,Pulmonary Atelectasis, Compression,Pulmonary Atelectasis, Congestive,Pulmonary Atelectasis, Contraction,Pulmonary Atelectasis, Postoperative,Pulmonary Atelectasis, Resorption,Resorption Atelectases,Resorption Pulmonary Atelectases
D014057 Tomography, X-Ray Computed Tomography using x-ray transmission and a computer algorithm to reconstruct the image. CAT Scan, X-Ray,CT Scan, X-Ray,Cine-CT,Computerized Tomography, X-Ray,Electron Beam Computed Tomography,Tomodensitometry,Tomography, Transmission Computed,X-Ray Tomography, Computed,CAT Scan, X Ray,CT X Ray,Computed Tomography, X-Ray,Computed X Ray Tomography,Computerized Tomography, X Ray,Electron Beam Tomography,Tomography, X Ray Computed,Tomography, X-Ray Computer Assisted,Tomography, X-Ray Computerized,Tomography, X-Ray Computerized Axial,Tomography, Xray Computed,X Ray Computerized Tomography,X Ray Tomography, Computed,X-Ray Computer Assisted Tomography,X-Ray Computerized Axial Tomography,Beam Tomography, Electron,CAT Scans, X-Ray,CT Scan, X Ray,CT Scans, X-Ray,CT X Rays,Cine CT,Computed Tomography, Transmission,Computed Tomography, X Ray,Computed Tomography, Xray,Computed X-Ray Tomography,Scan, X-Ray CAT,Scan, X-Ray CT,Scans, X-Ray CAT,Scans, X-Ray CT,Tomographies, Computed X-Ray,Tomography, Computed X-Ray,Tomography, Electron Beam,Tomography, X Ray Computer Assisted,Tomography, X Ray Computerized,Tomography, X Ray Computerized Axial,Transmission Computed Tomography,X Ray Computer Assisted Tomography,X Ray Computerized Axial Tomography,X Ray, CT,X Rays, CT,X-Ray CAT Scan,X-Ray CAT Scans,X-Ray CT Scan,X-Ray CT Scans,X-Ray Computed Tomography,X-Ray Computerized Tomography,Xray Computed Tomography
D015656 Respiratory Mechanics The physical or mechanical action of the LUNGS; DIAPHRAGM; RIBS; and CHEST WALL during respiration. It includes airflow, lung volume, neural and reflex controls, mechanoreceptors, breathing patterns, etc. Breathing Mechanics,Breathing Mechanic,Mechanic, Breathing,Mechanic, Respiratory,Mechanics, Breathing,Mechanics, Respiratory,Respiratory Mechanic

Related Publications

Göran Hedenstierna, and Hans Ulrich Rothen
September 1998, Anesthesia and analgesia,
Göran Hedenstierna, and Hans Ulrich Rothen
January 1972, Proceedings of the Clinical Dialysis and Transplant Forum,
Göran Hedenstierna, and Hans Ulrich Rothen
January 1994, Advances in veterinary science and comparative medicine,
Göran Hedenstierna, and Hans Ulrich Rothen
January 2000, Regional anesthesia and pain medicine,
Göran Hedenstierna, and Hans Ulrich Rothen
February 1998, Acta anaesthesiologica Scandinavica,
Göran Hedenstierna, and Hans Ulrich Rothen
January 1967, Anesthesiology,
Göran Hedenstierna, and Hans Ulrich Rothen
January 1984, International journal of clinical monitoring and computing,
Göran Hedenstierna, and Hans Ulrich Rothen
January 1951, Bulletin der Schweizerischen Akademie der Medizinischen Wissenschaften,
Göran Hedenstierna, and Hans Ulrich Rothen
May 1984, Revista medica de Chile,
Copied contents to your clipboard!