Characterization of bacterial communities in hybrid upflow anaerobic sludge blanket (UASB)-membrane bioreactor (MBR) process for berberine antibiotic wastewater treatment. 2013

Guanglei Qiu, and Yong-Hui Song, and Ping Zeng, and Liang Duan, and Shuhu Xiao
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayangfang 8, Anwai Beiyuan, Beijing 100012, China.

Biodegradation of berberine antibiotic was investigated in upflow anaerobic sludge blanket (UASB)-membrane bioreactor (MBR) process. After 118days of operation, 99.0%, 98.0% and 98.0% overall removals of berberine, COD and NH4(+)-N were achieved, respectively. The detailed composition of the established bacterial communities was studied by using 16S rDNA clone library. Totally, 400 clones were retrieved and grouped into 186 operational taxonomic units (OTUs). UASB was dominated by Firmicutes and Bacteroidetes, while Proteobacteria, especially Alpha- and Beta-proteobacteria were prevalent in the MBRs. Clostridium, Eubacterium and Synergistes in the UASB, as well as Hydrogenophaga, Azoarcus, Sphingomonas, Stenotrophomonas, Shinella and Alcaligenes in the MBRs were identified as potential functional species in biodegradation of berberine and/or its metabolites. The bacterial community compositions in two MBRs were significantly discrepant. However, the identical functions of the functional species ensured the comparable pollutant removal performances in two bioreactors.

UI MeSH Term Description Entries
D008567 Membranes, Artificial Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. Artificial Membranes,Artificial Membrane,Membrane, Artificial
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D000693 Anaerobiosis The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Anaerobic Metabolism,Anaerobic Metabolisms,Anaerobioses,Metabolism, Anaerobic,Metabolisms, Anaerobic
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001599 Berberine An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. Umbellatine
D012722 Sewage Refuse liquid or waste matter carried off by sewers. Sludge,Sludge Flocs
D014874 Water Pollutants, Chemical Chemical compounds which pollute the water of rivers, streams, lakes, the sea, reservoirs, or other bodies of water. Chemical Water Pollutants,Landfill Leachate,Leachate, Landfill,Pollutants, Chemical Water
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D062065 Wastewater Contaminated water generated as a waste product of human activity. Waste Water,Waste Waters,Wastewaters,Water, Waste,Waters, Waste
D019149 Bioreactors Tools or devices for generating products using the synthetic or chemical conversion capacity of a biological system. They can be classical fermentors, cell culture perfusion systems, or enzyme bioreactors. For production of proteins or enzymes, recombinant microorganisms such as bacteria, mammalian cells, or insect or plant cells are usually chosen. Fermentors,Bioreactor,Fermentor

Related Publications

Guanglei Qiu, and Yong-Hui Song, and Ping Zeng, and Liang Duan, and Shuhu Xiao
December 2008, Bioresource technology,
Guanglei Qiu, and Yong-Hui Song, and Ping Zeng, and Liang Duan, and Shuhu Xiao
September 2019, Bioresource technology,
Guanglei Qiu, and Yong-Hui Song, and Ping Zeng, and Liang Duan, and Shuhu Xiao
January 2013, Water science and technology : a journal of the International Association on Water Pollution Research,
Guanglei Qiu, and Yong-Hui Song, and Ping Zeng, and Liang Duan, and Shuhu Xiao
February 1996, Biotechnology and bioengineering,
Guanglei Qiu, and Yong-Hui Song, and Ping Zeng, and Liang Duan, and Shuhu Xiao
January 2005, Water research,
Guanglei Qiu, and Yong-Hui Song, and Ping Zeng, and Liang Duan, and Shuhu Xiao
January 2009, Water science and technology : a journal of the International Association on Water Pollution Research,
Guanglei Qiu, and Yong-Hui Song, and Ping Zeng, and Liang Duan, and Shuhu Xiao
April 2011, Environmental technology,
Guanglei Qiu, and Yong-Hui Song, and Ping Zeng, and Liang Duan, and Shuhu Xiao
November 1995, Antonie van Leeuwenhoek,
Guanglei Qiu, and Yong-Hui Song, and Ping Zeng, and Liang Duan, and Shuhu Xiao
November 2015, Journal of environmental biology,
Guanglei Qiu, and Yong-Hui Song, and Ping Zeng, and Liang Duan, and Shuhu Xiao
January 2011, Journal of hazardous materials,
Copied contents to your clipboard!