Induction of chronic relapsing experimental allergic encephalomyelitis in Biozzi mice. 1990

D Baker, and J K O'Neill, and S E Gschmeissner, and C E Wilcox, and C Butter, and J L Turk
Department of Pathology, Royal College of Surgeons of England, London, U.K.

Experimental allergic encephalomyelitis (EAE) was induced in Biozzi AB/H (antibody high) mice by sensitization with spinal cord homogenate in adjuvant. Biozzi AB/H mice were highly susceptible to EAE induction and followed a chronic relapsing pattern of disease. Disease episodes were characterized by mononuclear infiltration of the central nervous system, with demyelination being particularly evident in relapse. The cellular infiltrates, which were associated with immunoglobulin deposition, consisted of macrophages and primarily CD4-positive T lymphocytes. However, similarly treated Biozzi AB/L (antibody low) mice were markedly less susceptible to EAE induction than AB/H mice. Thus, Biozzi mice should prove valuable for the study of chronic relapsing EAE.

UI MeSH Term Description Entries
D008297 Male Males
D002908 Chronic Disease Diseases which have one or more of the following characteristics: they are permanent, leave residual disability, are caused by nonreversible pathological alteration, require special training of the patient for rehabilitation, or may be expected to require a long period of supervision, observation, or care (Dictionary of Health Services Management, 2d ed). For epidemiological studies chronic disease often includes HEART DISEASES; STROKE; CANCER; and diabetes (DIABETES MELLITUS, TYPE 2). Chronic Condition,Chronic Illness,Chronically Ill,Chronic Conditions,Chronic Diseases,Chronic Illnesses,Condition, Chronic,Disease, Chronic,Illness, Chronic
D004681 Encephalomyelitis, Autoimmune, Experimental An experimental animal model for central nervous system demyelinating disease. Inoculation with a white matter emulsion combined with FREUND'S ADJUVANT, myelin basic protein, or purified central myelin triggers a T cell-mediated immune response directed towards central myelin. The pathologic features are similar to MULTIPLE SCLEROSIS, including perivascular and periventricular foci of inflammation and demyelination. Subpial demyelination underlying meningeal infiltrations also occurs, which is also a feature of ENCEPHALOMYELITIS, ACUTE DISSEMINATED. Passive immunization with T-cells from an afflicted animal to a normal animal also induces this condition. (From Immunol Res 1998;17(1-2):217-27; Raine CS, Textbook of Neuropathology, 2nd ed, p604-5) Autoimmune Encephalomyelitis, Experimental,Encephalomyelitis, Allergic,Encephalomyelitis, Experimental Autoimmune,Allergic Encephalomyelitis,Allergic Encephalomyelitis, Experimental,Autoimmune Experimental Encephalomyelitis,Experimental Allergic Encephalomyelitis,Experimental Autoimmune Encephalomyelitis,Encephalomyelitis, Autoimmune Experimental,Encephalomyelitis, Experimental Allergic,Experimental Allergic Encephalomyelitides,Experimental Encephalomyelitis, Autoimmune
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000917 Antibody Formation The production of ANTIBODIES by proliferating and differentiated B-LYMPHOCYTES under stimulation by ANTIGENS. Antibody Production,Antibody Response,Antibody Responses,Formation, Antibody,Production, Antibody,Response, Antibody,Responses, Antibody
D000949 Histocompatibility Antigens Class II Large, transmembrane, non-covalently linked glycoproteins (alpha and beta). Both chains can be polymorphic although there is more structural variation in the beta chains. The class II antigens in humans are called HLA-D ANTIGENS and are coded by a gene on chromosome 6. In mice, two genes named IA and IE on chromosome 17 code for the H-2 antigens. The antigens are found on B-lymphocytes, macrophages, epidermal cells, and sperm and are thought to mediate the competence of and cellular cooperation in the immune response. The term IA antigens used to refer only to the proteins encoded by the IA genes in the mouse, but is now used as a generic term for any class II histocompatibility antigen. Antigens, Immune Response,Class II Antigens,Class II Histocompatibility Antigen,Class II Major Histocompatibility Antigen,Ia Antigens,Ia-Like Antigen,Ia-Like Antigens,Immune Response Antigens,Immune-Associated Antigens,Immune-Response-Associated Antigens,MHC Class II Molecule,MHC II Peptide,Class II Antigen,Class II Histocompatibility Antigens,Class II MHC Proteins,Class II Major Histocompatibility Antigens,Class II Major Histocompatibility Molecules,I-A Antigen,I-A-Antigen,IA Antigen,MHC Class II Molecules,MHC II Peptides,MHC-II Molecules,Antigen, Class II,Antigen, I-A,Antigen, IA,Antigen, Ia-Like,Antigens, Class II,Antigens, Ia,Antigens, Ia-Like,Antigens, Immune-Associated,Antigens, Immune-Response-Associated,I A Antigen,II Peptide, MHC,Ia Like Antigen,Ia Like Antigens,Immune Associated Antigens,Immune Response Associated Antigens,MHC II Molecules,Molecules, MHC-II,Peptide, MHC II,Peptides, MHC II
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

D Baker, and J K O'Neill, and S E Gschmeissner, and C E Wilcox, and C Butter, and J L Turk
January 1987, Acta neuropathologica,
D Baker, and J K O'Neill, and S E Gschmeissner, and C E Wilcox, and C Butter, and J L Turk
March 1981, Journal of immunology (Baltimore, Md. : 1950),
D Baker, and J K O'Neill, and S E Gschmeissner, and C E Wilcox, and C Butter, and J L Turk
May 1997, Biochemical Society transactions,
D Baker, and J K O'Neill, and S E Gschmeissner, and C E Wilcox, and C Butter, and J L Turk
November 1988, Journal of immunology (Baltimore, Md. : 1950),
D Baker, and J K O'Neill, and S E Gschmeissner, and C E Wilcox, and C Butter, and J L Turk
October 1980, Archives of neurology,
D Baker, and J K O'Neill, and S E Gschmeissner, and C E Wilcox, and C Butter, and J L Turk
December 1985, Journal of neuroimmunology,
D Baker, and J K O'Neill, and S E Gschmeissner, and C E Wilcox, and C Butter, and J L Turk
January 1988, Annals of the New York Academy of Sciences,
D Baker, and J K O'Neill, and S E Gschmeissner, and C E Wilcox, and C Butter, and J L Turk
June 2015, Clinical and experimental immunology,
D Baker, and J K O'Neill, and S E Gschmeissner, and C E Wilcox, and C Butter, and J L Turk
February 1995, Journal of immunology (Baltimore, Md. : 1950),
D Baker, and J K O'Neill, and S E Gschmeissner, and C E Wilcox, and C Butter, and J L Turk
January 1987, Journal of neuroscience research,
Copied contents to your clipboard!