The immunoglobulin allotype contributed by peritoneal cavity B cells dominates in SCID mice reconstituted with allotype-disparate mixtures of splenic and peritoneal cavity B cells. 1990

J E Riggs, and R S Stowers, and D E Mosier
Medical Biology Institute, Division of Immunology, La Jolla, California 92037.

We have studied potential regulatory interactions between mature B lymphocyte populations by analysis of C.B-17 severe combined immunodeficient (SCID) mice reconstituted simultaneously with immunoglobulin allotype-congenic mixtures of spleen (SP) and peritoneal cavity (PerC) B cells. We have previously shown that the independent transfer of B cells from these sources leads to the long-term survival of donor B cells and reconstitution of immunoglobulin levels in SCID mice (Riggs, J.E., D.L. Robertson, R.S. Stowers, and D.E. Mosier, manuscript submitted for publication). SP and PerC B cells differ in numerous respects, with the PerC having higher proportions of large, activated B cells that express the IgM greater than IgD phenotype and greater numbers of CD5 B cells. The injection of equal numbers of B cells from SP and PerC into SCID recipients (e.g., BALB/c SP + C.B-17 Per C----SCID) has led to the following observations: (a) serum IgM allotypes in B cell chimeras revealed strict dominance by the allotype contributed by the PerC B cells; (b) this dominance was not due to regulatory T cells; (c) B cells of the unexpressed (i.e., SP) allotype were present in the chimera in the spleen but not the peritoneal cavity; and (d) immunization with TI and TD antigens failed to elicit the SP IgM allotype, whereas secondary TD antigen immunization elicited low levels of the SP IgG2a allotype. Additional experiments demonstrated concurrent expression of IgM allotypes derived from both SP and PerC B cells in recipients that: (a) received a 10-fold excess of SP B cells; (b) received SP B cells before PerC B cell transfer; or (c) received SP B cells intravenously and PerC B cells intraperitoneally. We conclude that the establishment of IgM synthesis by PerC B cells leads to a feedback inhibition of subsequent IgM synthesis by SP B cells, and that the frequency of B cells that can lead to this effect is substantially higher in peritoneal cavity than in spleen. These data provide further confirmation of regulatory interactions between B cells in the absence of T lymphocytes, but confound the interpretation of experiments supporting the existence of a separate CD5+ B cell lineage.

UI MeSH Term Description Entries
D007075 Immunoglobulin M A class of immunoglobulin bearing mu chains (IMMUNOGLOBULIN MU-CHAINS). IgM can fix COMPLEMENT. The name comes from its high molecular weight and originally was called a macroglobulin. Gamma Globulin, 19S,IgM,IgM Antibody,IgM1,IgM2,19S Gamma Globulin,Antibody, IgM
D007116 Immunization, Passive Transfer of immunity from immunized to non-immune host by administration of serum antibodies, or transplantation of lymphocytes (ADOPTIVE TRANSFER). Convalescent Plasma Therapy,Immunoglobulin Therapy,Immunotherapy, Passive,Normal Serum Globulin Therapy,Passive Antibody Transfer,Passive Transfer of Immunity,Serotherapy,Passive Immunotherapy,Therapy, Immunoglobulin,Antibody Transfer, Passive,Passive Immunization,Therapy, Convalescent Plasma,Transfer, Passive Antibody
D007126 Immunoglobulin Allotypes Allelic variants of the immunoglobulin light chains (IMMUNOGLOBULIN LIGHT CHAINS) or heavy chains (IMMUNOGLOBULIN HEAVY CHAINS) encoded by ALLELES of IMMUNOGLOBULIN GENES. Allotypes, Immunoglobulin,Allotypic Antibodies,Antibodies, Allotypic,Ig Allotypes,Allotype, Ig,Allotype, Immunoglobulin,Allotypes, Ig,Allotypic Antibody,Antibody, Allotypic,Ig Allotype,Immunoglobulin Allotype
D007153 Immunologic Deficiency Syndromes Syndromes in which there is a deficiency or defect in the mechanisms of immunity, either cellular or humoral. Antibody Deficiency Syndrome,Deficiency Syndrome, Immunologic,Deficiency Syndromes, Antibody,Deficiency Syndromes, Immunologic,Immunologic Deficiency Syndrome,Immunological Deficiency Syndromes,Antibody Deficiency Syndromes,Deficiency Syndrome, Antibody,Deficiency Syndrome, Immunological,Deficiency Syndromes, Immunological,Immunological Deficiency Syndrome,Syndrome, Antibody Deficiency,Syndrome, Immunologic Deficiency,Syndrome, Immunological Deficiency,Syndromes, Antibody Deficiency,Syndromes, Immunologic Deficiency,Syndromes, Immunological Deficiency
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D008817 Mice, Mutant Strains Mice bearing mutant genes which are phenotypically expressed in the animals. Mouse, Mutant Strain,Mutant Mouse Strain,Mutant Strain of Mouse,Mutant Strains of Mice,Mice Mutant Strain,Mice Mutant Strains,Mouse Mutant Strain,Mouse Mutant Strains,Mouse Strain, Mutant,Mouse Strains, Mutant,Mutant Mouse Strains,Mutant Strain Mouse,Mutant Strains Mice,Strain Mouse, Mutant,Strain, Mutant Mouse,Strains Mice, Mutant,Strains, Mutant Mouse
D010529 Peritoneal Cavity The space enclosed by the peritoneum. It is divided into two portions, the greater sac and the lesser sac or omental bursa, which lies behind the STOMACH. The two sacs are connected by the foramen of Winslow, or epiploic foramen. Greater Sac,Lesser Sac,Omental Bursa,Bursa, Omental,Cavity, Peritoneal,Sac, Greater,Sac, Lesser
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent

Related Publications

J E Riggs, and R S Stowers, and D E Mosier
July 1993, Cellular immunology,
J E Riggs, and R S Stowers, and D E Mosier
January 1994, In vivo (Athens, Greece),
J E Riggs, and R S Stowers, and D E Mosier
December 1991, Immunological reviews,
J E Riggs, and R S Stowers, and D E Mosier
November 1985, Cellular immunology,
J E Riggs, and R S Stowers, and D E Mosier
February 2002, Immunology,
J E Riggs, and R S Stowers, and D E Mosier
April 1992, Scandinavian journal of immunology,
J E Riggs, and R S Stowers, and D E Mosier
December 1985, Proceedings of the National Academy of Sciences of the United States of America,
J E Riggs, and R S Stowers, and D E Mosier
October 1995, Immunology and cell biology,
Copied contents to your clipboard!