4-Amino[1,2,4]triazolo[4,3-a]quinoxalines. A novel class of potent adenosine receptor antagonists and potential rapid-onset antidepressants. 1990

R Sarges, and H R Howard, and R G Browne, and L A Lebel, and P A Seymour, and B K Koe
Pfizer Central Research, Pfizer Inc., Groton, Connecticut 06340.

A series of 4-amino[1,2,4]triazolo[4,3-a]quinoxalines has been prepared. Many compounds from this class reduce immobility in Porsolt's behavioral despair model in rats upon acute administration and may therefore have therapeutic potential as novel and rapid acting antidepressant agents. Optimal activity in this test is associated with hydrogen, CF3, or small alkyl groups in the 1-position, with NH2, NH-acetyl, or amines substituted with small alkyl groups in the 4-position, and with hydrogen or 8-halogen substituents in the aromatic ring. Furthermore, many of these 4-amino[1,2,4]triazolo[4,3-a]quinoxalines bind avidly, and in some cases very selectively, to adenosine A1 and A2 receptors. A1 affinity of these compounds was measured by their inhibition of tritiated CHA (N6-cyclohexyladenosine) binding in rat cerebral cortex membranes and A2 affinity by their inhibition of tritiated NECA (5'-(N-ethylcarbamoyl)adenosine) binding to rat striatal homogenate in the presence of cold N6-cyclopentyladenosine. Structure-activity relationship (SAR) studies show that best A1 affinity is associated with ethyl, CF3, or C2F5 in the 1-position, NH-iPr or NH-cycloalkyl in the 4-position, and with an 8-chloro substituent. Affinity at the A2 receptor is mostly dependent on the presence of an NH2 group in the 4-position and is enhanced by phenyl, CF3, or ethyl in the 1-position. The most selective A1 ligand by a factor of greater than 3000 is 121 (CP-68,247; 8-chloro-4-(cyclohexyl-amino)-1- (trifluoromethyl)[1,2,4]triazolo[4,3-a]quinoxaline) with an IC50 of 28 nM at the A1 receptor. The most potent A2 ligand is 128 (CP-66,713; 4-amino-8-chloro-1- phenyl[1,2,4]triazolo[4,3-a]quinoxaline) with an IC50 of 21 nM at the A2 receptor and a 13-fold selectivity for this receptor. Representatives from this series appear to act as antagonists at both A1 and A2 receptors since they antagonize the inhibiting action of CHA on norepinephrine-stimulated cAMP formation in fat cells and they decrease cAMP accumulation induced by adenosine in limbic forebrain slices. Thus certain members of this 4-amino[1,2,4]triazolo[4,3-a]quinoxaline series are among the most potent and A1 or A2 selective non-xanthine adenosine antagonists known.

UI MeSH Term Description Entries
D008297 Male Males
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D011810 Quinoxalines Quinoxaline
D011983 Receptors, Purinergic Cell surface proteins that bind PURINES with high affinity and trigger intracellular changes which influence the behavior of cells. The best characterized classes of purinergic receptors in mammals are the P1 receptors, which prefer ADENOSINE, and the P2 receptors, which prefer ATP or ADP. Methyladenine Receptors,Purine Receptors,Purinergic Receptor,Purinergic Receptors,Purinoceptors,Purine Receptor,Purinoceptor,Receptors, Methyladenine,Receptors, Purine,Receptor, Purine,Receptor, Purinergic
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus

Related Publications

R Sarges, and H R Howard, and R G Browne, and L A Lebel, and P A Seymour, and B K Koe
May 1988, Journal of medicinal chemistry,
R Sarges, and H R Howard, and R G Browne, and L A Lebel, and P A Seymour, and B K Koe
April 2011, Bioorganic & medicinal chemistry letters,
R Sarges, and H R Howard, and R G Browne, and L A Lebel, and P A Seymour, and B K Koe
December 2003, Bioorganic & medicinal chemistry,
R Sarges, and H R Howard, and R G Browne, and L A Lebel, and P A Seymour, and B K Koe
December 1997, Archiv der Pharmazie,
R Sarges, and H R Howard, and R G Browne, and L A Lebel, and P A Seymour, and B K Koe
March 1996, Journal of medicinal chemistry,
R Sarges, and H R Howard, and R G Browne, and L A Lebel, and P A Seymour, and B K Koe
March 2000, Journal of medicinal chemistry,
R Sarges, and H R Howard, and R G Browne, and L A Lebel, and P A Seymour, and B K Koe
August 1997, Die Pharmazie,
R Sarges, and H R Howard, and R G Browne, and L A Lebel, and P A Seymour, and B K Koe
February 2009, Bioorganic & medicinal chemistry letters,
R Sarges, and H R Howard, and R G Browne, and L A Lebel, and P A Seymour, and B K Koe
November 1999, Journal of medicinal chemistry,
Copied contents to your clipboard!