Ion transport function of SLC4A11 in corneal endothelium. 2013

Supriya S Jalimarada, and Diego G Ogando, and Eranga N Vithana, and Joseph A Bonanno
School of Optometry, Indiana University, Bloomington, Indiana, USA.

OBJECTIVE Mutations in SLC4A11, a member of the SLC4 superfamily of bicarbonate transporters, give rise to corneal endothelial cell dystrophies. SLC4A11 is a putative Na⁺ borate and Na⁺:OH⁻ transporter. Therefore we ask whether SLC4A11 in corneal endothelium transports borate (B[OH]₄⁻), bicarbonate (HCO3⁻), or hydroxyl (OH⁻) anions coupled to Na⁺. METHODS SLC4A11 expression in cultured primary bovine corneal endothelial cells (BCECs) was determined by semiquantitative PCR, SDS-PAGE/Western blotting, and immunofluorescence staining. Ion transport function was examined by measuring intracellular pH (pHi) or Na⁺ ([Na⁺](i)) in response to Ringer solutions with/without B(OH)₄⁻ or HCO₃⁻ after overexpressing or small interfering RNA (siRNA) silencing of SLC4A11. RESULTS SLC4A11 is localized to the basolateral membrane in BCEC. B(OH)₄⁻ (2.5-10 mM) in bicarbonate-free Ringer induced a rapid small acidification (0.01 pH unit) followed by alkalinization (0.05-0.1 pH unit), consistent with diffusion of boric acid into the cell followed by B(OH)₄⁻. However, the rate of B(OH)₄⁻-induced pHi change was unaffected by overexpression of SLC4A11. B(OH)₄⁻ did not induce significant changes in resting [Na⁺(i)] or the amplitude and rate of acidification caused by Na⁺ removal. siRNA-mediated knockdown of SLC4A11 (∼70%) did not alter pHi responses to CO₂/HCO₃⁻-rich Ringer, Na⁺-free induced acidification, or the rate of Na⁺ influx in the presence of bicarbonate. However, in the absence of bicarbonate, siSLC4A11 knockdown significantly decreased the rate (43%) and amplitude (48%) of acidification due to Na⁺ removal and recovery (53%) upon add-back. Additionally, the rate of acid recovery following NH₄⁺ prepulse was decreased significantly (27%) by SLC4A11 silencing. CONCLUSIONS In corneal endothelium, SLC4A11 displays robust Na⁺-coupled OH⁻ transport, but does not transport B(OH)₄⁻ or HCO₃⁻.

UI MeSH Term Description Entries
D001881 Borates Inorganic or organic salts and esters of boric acid. Borate
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004728 Endothelium, Corneal Single layer of large flattened cells covering the surface of the cornea. Anterior Chamber Epithelium,Corneal Endothelium,Endothelium, Anterior Chamber,Epithelium, Anterior Chamber,Anterior Chamber Endothelium
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D006878 Hydroxides Inorganic compounds that contain the OH- group.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001485 Basement Membrane A darkly stained mat-like EXTRACELLULAR MATRIX (ECM) that separates cell layers, such as EPITHELIUM from ENDOTHELIUM or a layer of CONNECTIVE TISSUE. The ECM layer that supports an overlying EPITHELIUM or ENDOTHELIUM is called basal lamina. Basement membrane (BM) can be formed by the fusion of either two adjacent basal laminae or a basal lamina with an adjacent reticular lamina of connective tissue. BM, composed mainly of TYPE IV COLLAGEN; glycoprotein LAMININ; and PROTEOGLYCAN, provides barriers as well as channels between interacting cell layers. Basal Lamina,Basement Lamina,Lamina Densa,Lamina Lucida,Lamina Reticularis,Basement Membranes,Densas, Lamina,Lamina, Basal,Lamina, Basement,Lucida, Lamina,Membrane, Basement,Membranes, Basement,Reticularis, Lamina

Related Publications

Supriya S Jalimarada, and Diego G Ogando, and Eranga N Vithana, and Joseph A Bonanno
November 2016, American journal of physiology. Cell physiology,
Supriya S Jalimarada, and Diego G Ogando, and Eranga N Vithana, and Joseph A Bonanno
January 2003, Progress in retinal and eye research,
Supriya S Jalimarada, and Diego G Ogando, and Eranga N Vithana, and Joseph A Bonanno
February 1985, Acta ophthalmologica,
Supriya S Jalimarada, and Diego G Ogando, and Eranga N Vithana, and Joseph A Bonanno
February 2017, EBioMedicine,
Supriya S Jalimarada, and Diego G Ogando, and Eranga N Vithana, and Joseph A Bonanno
January 2020, Human molecular genetics,
Supriya S Jalimarada, and Diego G Ogando, and Eranga N Vithana, and Joseph A Bonanno
April 1969, Experimental eye research,
Supriya S Jalimarada, and Diego G Ogando, and Eranga N Vithana, and Joseph A Bonanno
November 1997, The American journal of physiology,
Supriya S Jalimarada, and Diego G Ogando, and Eranga N Vithana, and Joseph A Bonanno
February 2020, American journal of physiology. Cell physiology,
Supriya S Jalimarada, and Diego G Ogando, and Eranga N Vithana, and Joseph A Bonanno
January 1985, Vestnik oftalmologii,
Supriya S Jalimarada, and Diego G Ogando, and Eranga N Vithana, and Joseph A Bonanno
September 2021, Investigative ophthalmology & visual science,
Copied contents to your clipboard!