Two Rac paralogs regulate polarized growth in the human fungal pathogen Cryptococcus neoformans. 2013

Elizabeth Ripley Ballou, and Kyla Selvig, and Jessica L Narloch, and Connie B Nichols, and J Andrew Alspaugh
Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.

A genome wide analysis of the human fungal pathogen Cryptococcus neoformans var. grubii has revealed a number of duplications of highly conserved genes involved in morphogenesis. Previously, we reported that duplicate Cdc42 paralogs provide C. neoformans with niche-specific responses to environmental stresses: Cdc42 is required for thermotolerance, while Cdc420 supports the formation of titan cells. The related Rho-GTPase Rac1 has been shown in C. neoformans var. neoformans to play a major role in filamentation and to share Cdc42/Cdc420 binding partners. Here we report the characterization of a second Rac paralog in C. neoformans, Rac2, and describe its overlapping function with the previously described CnRac, Rac1. Further, we demonstrate that the Rac paralogs play a primary role in polarized growth via the organization of reactive oxygen species and play only a minor role in the organization of actin. Finally, we provide preliminary evidence that pharmacological inhibitors of Rac activity and actin stability have synergistic activity.

UI MeSH Term Description Entries
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D003453 Cryptococcosis Fungal infection caused by genus CRYPTOCOCCUS. C gattii Infection,C neoformans Infection,C. gattii Infection,C. neoformans Infection,Cryptococcus Infection,Cryptococcus Infections,Cryptococcus gattii Infection,Torulosis,Cryptococcus neoformans Infection,C gattii Infections,C neoformans Infections,C. gattii Infections,C. neoformans Infections,Cryptococcoses,Cryptococcus gattii Infections,Cryptococcus neoformans Infections,Infection, C gattii,Infection, C neoformans,Infection, C. gattii,Infection, C. neoformans,Infection, Cryptococcus,Infection, Cryptococcus gattii,Infection, Cryptococcus neoformans,Infections, C gattii,Infections, C. neoformans,Toruloses
D003455 Cryptococcus neoformans A species of the fungus CRYPTOCOCCUS. Its teleomorph is Filobasidiella neoformans. Blastomyces neoformans,Debaryomyces neoformans,Filobasidiella neoformans,Lipomyces neoformans,Saccharomyces neoformans,Torula neoformans,Torulopsis neoformans,Cryptococcus neoformans var. grubii
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000097766 RAC2 GTP-Binding Protein A small rac GTP-binding protein that forms one of the components of the NADPH oxidase enzyme system.
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen
D017386 Sequence Homology, Amino Acid The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species. Homologous Sequences, Amino Acid,Amino Acid Sequence Homology,Homologs, Amino Acid Sequence,Homologs, Protein Sequence,Homology, Protein Sequence,Protein Sequence Homologs,Protein Sequence Homology,Sequence Homology, Protein,Homolog, Protein Sequence,Homologies, Protein Sequence,Protein Sequence Homolog,Protein Sequence Homologies,Sequence Homolog, Protein,Sequence Homologies, Protein,Sequence Homologs, Protein
D020744 rac GTP-Binding Proteins A sub-family of RHO GTP-BINDING PROTEINS that is involved in regulating the organization of cytoskeletal filaments. This enzyme was formerly listed as EC 3.6.1.47. rac Proteins,rac G Protein,G Protein, rac,GTP-Binding Proteins, rac,rac GTP Binding Proteins
D020764 cdc42 GTP-Binding Protein A member of the Rho family of MONOMERIC GTP-BINDING PROTEINS. It is associated with a diverse array of cellular functions including cytoskeletal changes, filopodia formation and transport through the GOLGI APPARATUS. This enzyme was formerly listed as EC 3.6.1.47. G25K GTP-Binding Protein, Placental Isoform,G25K Protein,cdc42 Protein,p21 cdc42,Cell Division Control Protein 42 Homolog,Cell Division Cycle 42 Protein,G25K GTP-Binding Protein,G25K GTP Binding Protein,G25K GTP Binding Protein, Placental Isoform,GTP-Binding Protein, G25K,GTP-Binding Protein, cdc42,cdc42 GTP Binding Protein,cdc42, p21

Related Publications

Elizabeth Ripley Ballou, and Kyla Selvig, and Jessica L Narloch, and Connie B Nichols, and J Andrew Alspaugh
January 2013, PLoS genetics,
Elizabeth Ripley Ballou, and Kyla Selvig, and Jessica L Narloch, and Connie B Nichols, and J Andrew Alspaugh
April 2017, Antimicrobial agents and chemotherapy,
Elizabeth Ripley Ballou, and Kyla Selvig, and Jessica L Narloch, and Connie B Nichols, and J Andrew Alspaugh
December 2013, Current opinion in microbiology,
Elizabeth Ripley Ballou, and Kyla Selvig, and Jessica L Narloch, and Connie B Nichols, and J Andrew Alspaugh
February 2020, International journal of molecular sciences,
Elizabeth Ripley Ballou, and Kyla Selvig, and Jessica L Narloch, and Connie B Nichols, and J Andrew Alspaugh
November 2012, Future microbiology,
Elizabeth Ripley Ballou, and Kyla Selvig, and Jessica L Narloch, and Connie B Nichols, and J Andrew Alspaugh
April 2019, Mycopathologia,
Elizabeth Ripley Ballou, and Kyla Selvig, and Jessica L Narloch, and Connie B Nichols, and J Andrew Alspaugh
January 2009, Advances in applied microbiology,
Elizabeth Ripley Ballou, and Kyla Selvig, and Jessica L Narloch, and Connie B Nichols, and J Andrew Alspaugh
September 2011, Molecular microbiology,
Elizabeth Ripley Ballou, and Kyla Selvig, and Jessica L Narloch, and Connie B Nichols, and J Andrew Alspaugh
January 2021, Frontiers in cellular and infection microbiology,
Elizabeth Ripley Ballou, and Kyla Selvig, and Jessica L Narloch, and Connie B Nichols, and J Andrew Alspaugh
October 2008, Cell,
Copied contents to your clipboard!