Withdrawal and restoration of central vagal afferents within the dorsal vagal complex following subdiaphragmatic vagotomy. 2013

James H Peters, and Zachary R Gallaher, and Vitaly Ryu, and Krzysztof Czaja
Program in Neuroscience, Integrative Physiology and Neuroscience (IPN), College of Veterinary Medicine, Washington State University, Pullman, Washington, 99164.

Vagotomy, a severing of the peripheral axons of the vagus nerve, has been extensively utilized to determine the role of vagal afferents in viscerosensory signaling. Vagotomy is also an unavoidable component of some bariatric surgeries. Although it is known that peripheral axons of the vagus nerve degenerate and then regenerate to a limited extent following vagotomy, very little is known about the response of central vagal afferents in the dorsal vagal complex to this type of damage. We tested the hypothesis that vagotomy results in the transient withdrawal of central vagal afferent terminals from their primary central target, the nucleus of the solitary tract (NTS). Sprague-Dawley rats underwent bilateral subdiaphragmatic vagotomy and were sacrificed 10, 30, or 60 days later. Plastic changes in vagal afferent fibers and synapses were investigated at the morphological and functional levels by using a combination of an anterograde tracer, synapse-specific markers, and patch-clamp electrophysiology in horizontal brain sections. Morphological data revealed that numbers of vagal afferent fibers and synapses in the NTS were significantly reduced 10 days following vagotomy and were restored to control levels by 30 days and 60 days, respectively. Electrophysiology revealed transient decreases in spontaneous glutamate release, glutamate release probability, and the number of primary afferent inputs. Our results demonstrate that subdiaphragmatic vagotomy triggers transient withdrawal and remodeling of central vagal afferent terminals in the NTS. The observed vagotomy-induced plasticity within this key feeding center of the brain may be partially responsible for the response of bariatric patients following gastric bypass surgery.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D003964 Diaphragm The musculofibrous partition that separates the THORACIC CAVITY from the ABDOMINAL CAVITY. Contraction of the diaphragm increases the volume of the thoracic cavity aiding INHALATION. Respiratory Diaphragm,Diaphragm, Respiratory,Diaphragms,Diaphragms, Respiratory,Respiratory Diaphragms
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

James H Peters, and Zachary R Gallaher, and Vitaly Ryu, and Krzysztof Czaja
January 1985, Acta anatomica,
James H Peters, and Zachary R Gallaher, and Vitaly Ryu, and Krzysztof Czaja
December 1968, Journal de chirurgie,
James H Peters, and Zachary R Gallaher, and Vitaly Ryu, and Krzysztof Czaja
January 1993, Neuroscience,
James H Peters, and Zachary R Gallaher, and Vitaly Ryu, and Krzysztof Czaja
October 2004, American journal of physiology. Regulatory, integrative and comparative physiology,
James H Peters, and Zachary R Gallaher, and Vitaly Ryu, and Krzysztof Czaja
July 1988, The Journal of comparative neurology,
James H Peters, and Zachary R Gallaher, and Vitaly Ryu, and Krzysztof Czaja
March 2012, Neuroscience letters,
James H Peters, and Zachary R Gallaher, and Vitaly Ryu, and Krzysztof Czaja
March 2004, Brain, behavior, and immunity,
James H Peters, and Zachary R Gallaher, and Vitaly Ryu, and Krzysztof Czaja
December 1996, Brain research,
James H Peters, and Zachary R Gallaher, and Vitaly Ryu, and Krzysztof Czaja
February 1991, Brain research,
Copied contents to your clipboard!