Effects of isolated locomotor muscle fatigue on pacing and time trial performance. 2013

Helma M de Morree, and Samuele M Marcora
School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UK.

OBJECTIVE Locomotor muscle fatigue impairs exercise performance during time to exhaustion tests. However, its effect on self-regulation of power output (pacing) is unknown. The primary aim of this study was to investigate the effects of locomotor muscle fatigue on pacing and time trial performance. METHODS Ten healthy recreationally active men completed a 15-min time trial on a cycle ergometer 30 min after undergoing an eccentric fatiguing protocol designed to induce a substantial strength loss in the knee extensor muscles without inducing significant metabolic stress. This fatigue condition was compared with a control condition, using a randomly counterbalanced AB/BA crossover design. RESULTS Total work completed during the 15-min cycling time trial was significantly reduced by 4.8 % in the fatigue condition compared with the control condition. This was caused by a significant reduction in power output. Rating of perceived exertion was significantly higher in the fatigue condition compared with the control condition only during the first 3 min of the time trial. Heart rate and vastus lateralis integrated electromyogram were not significantly different between the two conditions. CONCLUSIONS The results show that participants with fatigued locomotor muscles reduce their pace but do not change their pacing strategy. As a result, there was a significant reduction in time trial performance. As predicted by the psychobiological model of exercise performance, a slower pace may be a behavioral response to compensate for the significant increase in perception of effort induced by locomotor muscle fatigue.

UI MeSH Term Description Entries
D007719 Knee Joint A synovial hinge connection formed between the bones of the FEMUR; TIBIA; and PATELLA. Superior Tibiofibular Joint,Joint, Knee,Joint, Superior Tibiofibular,Knee Joints,Superior Tibiofibular Joints,Tibiofibular Joint, Superior
D008297 Male Males
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D010807 Physical Endurance The time span between the beginning of physical activity by an individual and the termination because of exhaustion. Endurance, Physical,Physical Stamina,Stamina, Physical
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D001642 Bicycling The use of a bicycle for transportation or recreation. It does not include the use of a bicycle in studying the body's response to physical exertion (BICYCLE ERGOMETRY TEST see EXERCISE TEST).
D013312 Stress, Physiological The unfavorable effect of environmental factors (stressors) on the physiological functions of an organism. Prolonged unresolved physiological stress can affect HOMEOSTASIS of the organism, and may lead to damaging or pathological conditions. Biotic Stress,Metabolic Stress,Physiological Stress,Abiotic Stress,Abiotic Stress Reaction,Abiotic Stress Response,Biological Stress,Metabolic Stress Response,Physiological Stress Reaction,Physiological Stress Reactivity,Physiological Stress Response,Abiotic Stress Reactions,Abiotic Stress Responses,Abiotic Stresses,Biological Stresses,Biotic Stresses,Metabolic Stress Responses,Metabolic Stresses,Physiological Stress Reactions,Physiological Stress Responses,Physiological Stresses,Reaction, Abiotic Stress,Reactions, Abiotic Stress,Response, Abiotic Stress,Response, Metabolic Stress,Stress Reaction, Physiological,Stress Response, Metabolic,Stress Response, Physiological,Stress, Abiotic,Stress, Biological,Stress, Biotic,Stress, Metabolic

Related Publications

Helma M de Morree, and Samuele M Marcora
November 2020, Medicine and science in sports and exercise,
Helma M de Morree, and Samuele M Marcora
July 2006, Journal of applied physiology (Bethesda, Md. : 1985),
Helma M de Morree, and Samuele M Marcora
March 1993, Medicine and science in sports and exercise,
Helma M de Morree, and Samuele M Marcora
June 2008, Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology,
Helma M de Morree, and Samuele M Marcora
August 2012, Medicine and science in sports and exercise,
Helma M de Morree, and Samuele M Marcora
May 2008, Journal of applied physiology (Bethesda, Md. : 1985),
Helma M de Morree, and Samuele M Marcora
August 2011, Journal of strength and conditioning research,
Helma M de Morree, and Samuele M Marcora
July 2002, Journal of sports sciences,
Copied contents to your clipboard!