Laminin-111-derived peptide-hyaluronate hydrogels as a synthetic basement membrane. 2013

Yuji Yamada, and Kentaro Hozumi, and Fumihiko Katagiri, and Yamato Kikkawa, and Motoyoshi Nomizu
Department of Clinical Biochemistry, Faculty of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.

We have identified a number of cell-adhesive peptides from laminins, a major component of basement membranes. Cell-adhesive peptides derived from basement membrane proteins are potential candidates for incorporating cell-binding activities into scaffold materials for tissue engineering. Our goal is development of a chemically synthetic basement membrane using laminin-derived cell-adhesive peptides and polymeric materials. In this study, we used hyaluronic acid (HA) as a scaffold material and laminin-derived cell-adhesive peptides, A99 (AGTFALRGDNPQG, binds to integrin αvβ3), AG73 (RKRLQVQLSIRT, binds to syndecans), and an A99/AG73 mixture (molar ratio = 9:1) conjugated to two-dimensional (2D) HA matrices. As a result, it was found that the 2D A99/AG73-HA matrices have strong biological functions, such as cell attachment, cell spreading, and neurite outgrowth, similar to that of basement membrane extract (BME)-coated plates. Next, we developed three-dimensional (3D) peptide-HA matrices using the A99/AG73 mixture. The 3D A99/AG73-HA matrices promoted cell spreading and improved cell viability and collagen gene expression. Further, PC12 neurite extension was observed in the 3D A99/AG73-HA matrices. These biological activities of the 3D A99/AG73-HA matrices were similar to those of the 3D BME matrices. These results suggest that the peptide-HA matrices are useful as 2D and 3D matrices and can be applied for tissue engineering as a synthetic basement membrane.

UI MeSH Term Description Entries
D007797 Laminin Large, noncollagenous glycoprotein with antigenic properties. It is localized in the basement membrane lamina lucida and functions to bind epithelial cells to the basement membrane. Evidence suggests that the protein plays a role in tumor invasion. Merosin,Glycoprotein GP-2,Laminin M,Laminin M Chain,Chain, Laminin M,Glycoprotein GP 2,M Chain, Laminin
D008567 Membranes, Artificial Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. Artificial Membranes,Artificial Membrane,Membrane, Artificial
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006820 Hyaluronic Acid A natural high-viscosity mucopolysaccharide with alternating beta (1-3) glucuronide and beta (1-4) glucosaminidic bonds. It is found in the UMBILICAL CORD, in VITREOUS BODY and in SYNOVIAL FLUID. A high urinary level is found in PROGERIA. Amo Vitrax,Amvisc,Biolon,Etamucine,Healon,Hyaluronan,Hyaluronate Sodium,Hyvisc,Luronit,Sodium Hyaluronate,Acid, Hyaluronic,Hyaluronate, Sodium,Vitrax, Amo
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001485 Basement Membrane A darkly stained mat-like EXTRACELLULAR MATRIX (ECM) that separates cell layers, such as EPITHELIUM from ENDOTHELIUM or a layer of CONNECTIVE TISSUE. The ECM layer that supports an overlying EPITHELIUM or ENDOTHELIUM is called basal lamina. Basement membrane (BM) can be formed by the fusion of either two adjacent basal laminae or a basal lamina with an adjacent reticular lamina of connective tissue. BM, composed mainly of TYPE IV COLLAGEN; glycoprotein LAMININ; and PROTEOGLYCAN, provides barriers as well as channels between interacting cell layers. Basal Lamina,Basement Lamina,Lamina Densa,Lamina Lucida,Lamina Reticularis,Basement Membranes,Densas, Lamina,Lamina, Basal,Lamina, Basement,Lucida, Lamina,Membrane, Basement,Membranes, Basement,Reticularis, Lamina
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D016501 Neurites In tissue culture, hairlike projections of neurons stimulated by growth factors and other molecules. These projections may go on to form a branched tree of dendrites or a single axon or they may be reabsorbed at a later stage of development. "Neurite" may refer to any filamentous or pointed outgrowth of an embryonal or tissue-culture neural cell. Neurite

Related Publications

Yuji Yamada, and Kentaro Hozumi, and Fumihiko Katagiri, and Yamato Kikkawa, and Motoyoshi Nomizu
October 1991, Cancer metastasis reviews,
Yuji Yamada, and Kentaro Hozumi, and Fumihiko Katagiri, and Yamato Kikkawa, and Motoyoshi Nomizu
April 1991, Journal of neuroscience research,
Yuji Yamada, and Kentaro Hozumi, and Fumihiko Katagiri, and Yamato Kikkawa, and Motoyoshi Nomizu
January 1994, Cancer treatment and research,
Yuji Yamada, and Kentaro Hozumi, and Fumihiko Katagiri, and Yamato Kikkawa, and Motoyoshi Nomizu
September 2013, The British journal of dermatology,
Yuji Yamada, and Kentaro Hozumi, and Fumihiko Katagiri, and Yamato Kikkawa, and Motoyoshi Nomizu
January 2017, PloS one,
Yuji Yamada, and Kentaro Hozumi, and Fumihiko Katagiri, and Yamato Kikkawa, and Motoyoshi Nomizu
January 2017, Matrix biology : journal of the International Society for Matrix Biology,
Yuji Yamada, and Kentaro Hozumi, and Fumihiko Katagiri, and Yamato Kikkawa, and Motoyoshi Nomizu
July 1985, Ugeskrift for laeger,
Yuji Yamada, and Kentaro Hozumi, and Fumihiko Katagiri, and Yamato Kikkawa, and Motoyoshi Nomizu
January 1987, Annual review of cell biology,
Yuji Yamada, and Kentaro Hozumi, and Fumihiko Katagiri, and Yamato Kikkawa, and Motoyoshi Nomizu
January 2013, Cell adhesion & migration,
Yuji Yamada, and Kentaro Hozumi, and Fumihiko Katagiri, and Yamato Kikkawa, and Motoyoshi Nomizu
April 1992, British journal of cancer,
Copied contents to your clipboard!