Narrow-range peptide isoelectric focusing as peptide prefractionation method prior to tandem mass spectrometry analysis. 2013

Maria Pernemalm
Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.

High sample complexity is one of the major challenges in mass spectrometry-based proteomics today. Despite massive improvement in instrumentation, sample prefractionation is still needed to reduce sample complexity and improve proteome coverage. Isoelectric focusing (IEF) has been traditionally used as a first-dimension protein separation technique in two-dimensional gel electrophoresis-based proteomics. Recently, peptide IEF has emerged as appealing alternative for anion exchange chromatography in multidimensional LC-MS/MS workflows. The rationale behind using narrow-range peptide isoelectric focusing as a prefractionation method prior to ms/ms is to reduce the complexity induced by tryptic digestion. This is done by selectively analyzing a sub-fraction of peptides with an acidic pI. The pI range is chosen as it has previously been shown that 96 % of human proteins have at least one tryptic peptide between pH 3.4 and 4.9. This ensures high proteome coverage while reducing the number of peptides with 2/3. In addition the focusing precision is optimal in this range. Therefore, by analyzing this sub-fraction of peptides the complexity of the sample can be reduced without significant loss of proteome coverage. As the theoretical pI of peptides can be calculated, the pI of the identified peptides can be used to validate the peptide sequence (identified peptides with pI outside the pH range 3.4-4.9 are more likely to be false positives). In addition, this approach is compatible with iTRAQ labelling as the different iTRAQ labels migrate similarly in IEF.

UI MeSH Term Description Entries
D007525 Isoelectric Focusing Electrophoresis in which a pH gradient is established in a gel medium and proteins migrate until they reach the site (or focus) at which the pH is equal to their isoelectric point. Electrofocusing,Focusing, Isoelectric
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011232 Chemical Precipitation The formation of a solid in a solution as a result of a chemical reaction or the aggregation of soluble substances into complexes large enough to fall out of solution. Precipitation, Chemical
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014357 Trypsin A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4. Tripcellim,Trypure,beta-Trypsin,beta Trypsin
D053719 Tandem Mass Spectrometry A mass spectrometry technique using two (MS/MS) or more mass analyzers. With two in tandem, the precursor ions are mass-selected by a first mass analyzer, and focused into a collision region where they are then fragmented into product ions which are then characterized by a second mass analyzer. A variety of techniques are used to separate the compounds, ionize them, and introduce them to the first mass analyzer. For example, for in GC-MS/MS, GAS CHROMATOGRAPHY-MASS SPECTROMETRY is involved in separating relatively small compounds by GAS CHROMATOGRAPHY prior to injecting them into an ionization chamber for the mass selection. Mass Spectrometry-Mass Spectrometry,Mass Spectrometry Mass Spectrometry,Mass Spectrometry, Tandem

Related Publications

Maria Pernemalm
September 2008, Rapid communications in mass spectrometry : RCM,
Maria Pernemalm
January 2009, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!