Design-based stereology: Planning, volumetry and sampling are crucial steps for a successful study. 2014

Stefan Tschanz, and Jan Philipp Schneider, and Lars Knudsen
Institute of Anatomy, University of Bern, Bern, Switzerland.

Quantitative data obtained by means of design-based stereology can add valuable information to studies performed on a diversity of organs, in particular when correlated to functional/physiological and biochemical data. Design-based stereology is based on a sound statistical background and can be used to generate accurate data which are in line with principles of good laboratory practice. In addition, by adjusting the study design an appropriate precision can be achieved to find relevant differences between groups. For the success of the stereological assessment detailed planning is necessary. In this review we focus on common pitfalls encountered during stereological assessment. An exemplary workflow is included, and based on authentic examples, we illustrate a number of sampling principles which can be implemented to obtain properly sampled tissue blocks for various purposes.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008853 Microscopy The use of instrumentation and techniques for visualizing material and details that cannot be seen by the unaided eye. It is usually done by enlarging images, transmitted by light or electron beams, with optical or magnetic lenses that magnify the entire image field. With scanning microscopy, images are generated by collecting output from the specimen in a point-by-point fashion, on a magnified scale, as it is scanned by a narrow beam of light or electrons, a laser, a conductive probe, or a topographical probe. Compound Microscopy,Hand-Held Microscopy,Light Microscopy,Optical Microscopy,Simple Microscopy,Hand Held Microscopy,Microscopy, Compound,Microscopy, Hand-Held,Microscopy, Light,Microscopy, Optical,Microscopy, Simple
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D000715 Anatomy A branch of biology dealing with the structure of organisms. Anatomies
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013048 Specimen Handling Procedures for collecting, preserving, and transporting of specimens sufficiently stable to provide accurate and precise results suitable for clinical interpretation. Specimen Collection,Collection, Specimen,Collections, Specimen,Handling, Specimen,Handlings, Specimen,Specimen Collections,Specimen Handlings
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face

Related Publications

Stefan Tschanz, and Jan Philipp Schneider, and Lars Knudsen
June 1981, Journal of microscopy,
Stefan Tschanz, and Jan Philipp Schneider, and Lars Knudsen
January 2022, Anatomia, histologia, embryologia,
Stefan Tschanz, and Jan Philipp Schneider, and Lars Knudsen
July 1970, AORN journal,
Stefan Tschanz, and Jan Philipp Schneider, and Lars Knudsen
January 1996, Dental economics - oral hygiene,
Stefan Tschanz, and Jan Philipp Schneider, and Lars Knudsen
June 1970, Mikroskopie,
Stefan Tschanz, and Jan Philipp Schneider, and Lars Knudsen
January 2005, Neuroscience,
Stefan Tschanz, and Jan Philipp Schneider, and Lars Knudsen
March 2017, Journal of molecular neuroscience : MN,
Stefan Tschanz, and Jan Philipp Schneider, and Lars Knudsen
April 1993, Trends in biotechnology,
Stefan Tschanz, and Jan Philipp Schneider, and Lars Knudsen
May 2010, Acta oto-laryngologica,
Stefan Tschanz, and Jan Philipp Schneider, and Lars Knudsen
February 1970, Journal of microscopy,
Copied contents to your clipboard!