Imaging African trypanosomes. 2013

L MacLean, and E Myburgh, and J Rodgers, and H P Price
Centre for Immunology and Infection, Department of Biology/Hull York Medical School, University of York, Heslington, York, UK. l.m.maclean@dundee.ac.uk

Trypanosoma brucei are extracellular kinetoplastid parasites transmitted by the blood-sucking tsetse fly. They are responsible for the fatal disease human African trypanosomiasis (HAT), also known as sleeping sickness. In late-stage infection, trypanosomes cross the blood-brain barrier (BBB) and invade the central nervous system (CNS) invariably leading to coma and death if untreated. There is no available vaccine and current late-stage HAT chemotherapy consists of either melarsoprol, which is highly toxic causing up to 8% of deaths, or nifurtimox-eflornithine combination therapy (NECT), which is costly and difficult to administer. There is therefore an urgent need to identify new late-stage HAT drug candidates. Here, we review how current imaging tools, ranging from fluorescent confocal microscopy of live immobilized cells in culture to whole-animal imaging, are providing insight into T. brucei biology, parasite-host interplay, trypanosome CNS invasion and disease progression. We also consider how imaging tools can be used for candidate drug screening purposes that could lead to new chemotherapies.

UI MeSH Term Description Entries
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D006790 Host-Parasite Interactions The relationship between an invertebrate and another organism (the host), one of which lives at the expense of the other. Traditionally excluded from definition of parasites are pathogenic BACTERIA; FUNGI; VIRUSES; and PLANTS; though they may live parasitically. Host-Parasite Relations,Parasite-Host Relations,Host-Parasite Relationship,Parasite-Host Interactions,Host Parasite Interactions,Host Parasite Relations,Host Parasite Relationship,Host-Parasite Interaction,Host-Parasite Relation,Host-Parasite Relationships,Interaction, Host-Parasite,Interaction, Parasite-Host,Interactions, Host-Parasite,Interactions, Parasite-Host,Parasite Host Interactions,Parasite Host Relations,Parasite-Host Interaction,Parasite-Host Relation,Relation, Host-Parasite,Relation, Parasite-Host,Relations, Host-Parasite,Relations, Parasite-Host,Relationship, Host-Parasite,Relationships, Host-Parasite
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014346 Trypanosoma brucei brucei A hemoflagellate subspecies of parasitic protozoa that causes nagana in domestic and game animals in Africa. It apparently does not infect humans. It is transmitted by bites of tsetse flies (Glossina). Trypanosoma brucei,Trypanosoma brucei bruceus,Trypanosoma bruceus,brucei brucei, Trypanosoma,brucei, Trypanosoma brucei,bruceus, Trypanosoma,bruceus, Trypanosoma brucei
D014353 Trypanosomiasis, African A disease endemic among people and animals in Central Africa. It is caused by various species of trypanosomes, particularly T. gambiense and T. rhodesiense. Its second host is the TSETSE FLY. Involvement of the central nervous system produces "African sleeping sickness." Nagana is a rapidly fatal trypanosomiasis of horses and other animals. African Sleeping Sickness,Nagana,African Trypanosomiasis,African Sleeping Sicknesses,African Trypanosomiases,Sickness, African Sleeping,Sicknesses, African Sleeping,Sleeping Sickness, African,Sleeping Sicknesses, African,Trypanosomiases, African
D018613 Microscopy, Confocal A light microscopic technique in which only a small spot is illuminated and observed at a time. An image is constructed through point-by-point scanning of the field in this manner. Light sources may be conventional or laser, and fluorescence or transmitted observations are possible. Confocal Microscopy,Confocal Microscopy, Scanning Laser,Laser Microscopy,Laser Scanning Confocal Microscopy,Laser Scanning Microscopy,Microscopy, Confocal, Laser Scanning,Confocal Laser Scanning Microscopy,Confocal Microscopies,Laser Microscopies,Laser Scanning Microscopies,Microscopies, Confocal,Microscopies, Laser,Microscopies, Laser Scanning,Microscopy, Laser,Microscopy, Laser Scanning,Scanning Microscopies, Laser,Scanning Microscopy, Laser

Related Publications

L MacLean, and E Myburgh, and J Rodgers, and H P Price
April 2019, Parasites & vectors,
L MacLean, and E Myburgh, and J Rodgers, and H P Price
January 1981, Antibiotics and chemotherapy,
L MacLean, and E Myburgh, and J Rodgers, and H P Price
June 1993, Parasitology today (Personal ed.),
L MacLean, and E Myburgh, and J Rodgers, and H P Price
January 1985, Current topics in microbiology and immunology,
L MacLean, and E Myburgh, and J Rodgers, and H P Price
July 2010, Trends in parasitology,
L MacLean, and E Myburgh, and J Rodgers, and H P Price
June 1994, Science (New York, N.Y.),
L MacLean, and E Myburgh, and J Rodgers, and H P Price
January 1989, Annales de la Societe belge de medecine tropicale,
L MacLean, and E Myburgh, and J Rodgers, and H P Price
July 2001, Protist,
L MacLean, and E Myburgh, and J Rodgers, and H P Price
January 1985, Annales de l'Institut Pasteur. Immunologie,
L MacLean, and E Myburgh, and J Rodgers, and H P Price
December 1996, Parasitology today (Personal ed.),
Copied contents to your clipboard!